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Abstract

We present a hybrid Heston model with a local stochastic volatility to describe

government bond yield dynamics. The model is analytically tractable and, therefore,

can be e�ciently estimated using the maximum likelihood approach. Twofold is the

model contribution. First, it captures changes in the yield volatility and predict

future yield values of Germany, French, Italy and Spain. The result is an early-

warning indicator which anticipates phases of instability characterizing the time series

investigated. Then, the model describes convergence/divergence phenomena among

European government bond yields and explores the countries’ reactions to a common

monetary policy described through the EONIA interbank rate.

JEL classification: C13, C32, G12, G17, E58

Keywords: Stochastic volatility model, Kolmogorov backward equation, maximum

likelihood function, government bond yield forecasting.

1 Introduction

The financial and economic crisis that started in 2007 is a clear symbol of the material-

ization and propagation of systemic risk.

Systemic risk and the potential ensuing contagion refer to a situation whereby the insta-

bility in a given country, market or institution is transmitted to one or more countries,

markets or institutions. On the one hand, the strong interaction at the micro and meso

level generated the well-known knock-on e↵ect, which culminated in the demise of Lehman

Brothers. On the other hand, the same interdependence at the macro level has played a

key role in exacerbating the sovereign debt problems in the Euro zone.
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As a consequence, macro and financial economists and market participants have all at-

tempted to build reliable models to describe and anticipate systemic risk. Although the

resulting models are very di↵erent in form and fit, they all incorporate the interactions

as a key element in generating crisis and contagion. A significant part of the literature

focuses on the analysis of government bond yields. These important financial instruments,

in fact, reflect the interaction phenomena from di↵erent angles. First, they incorporate

information on the relationship among countries and their mutual interdependence in gov-

ernment debt. In this regard, the literature has studied the convergence (divergence) of

government bond yields in Europe and especially among the Euro Area countries1. In

many papers this is done by attributing an important role to the fiscal/monetary policies

in causing such convergence (divergence) (see, for instance, Rault and Afonso 2011; Afonso

and Strauch 2007; Attinasi et al. 2011; Mesters et al. 2014; Manganelli and Wolswijk 2009;

Sgherri and Zoli 2009). Second, the yield term structure provides important information

about how to evaluate a country with respect to its development over time. In this regard,

the above mentioned interactions become dynamic and describe phenomena in the short,

medium and long term (see, for instance, Diebold and Li 2006; Ehrmann et al. 2011; Von

Hagen et al. 2011; Trolle and Schwarz 2009).

In this paper we are interested in analyzing both the first line of research, interactions

among countries, and the second line, the countries’ development over time via yield

curves. Specifically, we propose a simple analytically tractable stochastic volatility model

in continuous time which captures the yield dynamics in the Eurozone. The model is

based upon an important assumption: the interest rate volatility is stochastic and common

across the di↵erent yields investigated. The stochasticity of the interest rate volatility is a

well-known stylized fact about interest rate (see, for example, Trolle and Schwarz 2009).

The fact that this volatility is common2 is due to the strong political and economical ties

among the countries analyzed. To sum up the model describes the dynamics of n yields

which depend, each in a di↵erent way, on a common stochastic volatility described by a

mean reverting process.

We deduce an integral representation formula for the transition/marginal conditional

density function of the process as well as an explicit expression for its moments. Further-

more, we propose an expansion of the marginal conditional density function in powers of

the volatility of volatility, and derive the first two terms of this expansion. These two

1A part of the research has focused on the determinants of yield spread between European countries

and other States (see Nickel et al. 2011; Giannone et al. 2011).
2We also generalized the model using two volatilities: one common to all yields and responsible for

the yield volatility changes, the other depends on the yield maturity and is responsible for the yield

cross section. This generalized model is still analytically tractable. Its ability to simultaneously describe

government bond yields with di↵erent maturities and representing di↵erent countries will be the object of

future research.
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terms are elementary functions and are used to obtain a closed form formula approxima-

tion for the transition probability function and the cumulative distribution function. This

simple perturbation approach, applicable to several stochastic volatility models, allows

us to cope with the curse of dimensionality which arises when an e�cient calibration of

the model is necessary. This in turn permits an e�cient estimation of model parameters,

yielding reliable time series of these parameters, whose analysis provides useful insights

into market behavior.

Two classes of models “compete” in being able to reproduce the yield curve. The first

are macroeconomic models which study how the market/government expectation of infla-

tion and future real economic activity determine the yields. This group of models often

use a reduced-form term structure where bond yields are expressed using three factors:

“level”, “steepness’, and “curvature”. Starting from the the pioneering Nelson and Siegel

(1987) model and its re-interpretation by Diebold and Li (2006), several reduced-form

term structure models have been developed over the last ten years. These models have

proven to be quite successful at capturing and forecasting the cross-sectional properties of

bond yields (see Diebold et al 2006b; Diebold et al. 2008; Diebold and Rudebusch 2013;

Hautsch and Ou 2012; Chen and Tsang 2013; Mesters et al. 2014). Moreover, they have

shown that level, slope and curvature factors also capture systematic risk. The second

class are financial models which study derivatives pricing and portfolio risk management.

Foremost among these are the popular a�ne arbitrage-free term structure models (see

Dong et al. 2002; Chiarella and Kwon 2003; Cheredito et al. 2007; Collin-Dufresne et

al. 2009; Andersen and Benzoni 2010). This class of models focuses on fitting the term

structure at a point in time to ensure good forecasts of derivatives and portfolio risk.

However, in recent years, these models have employed factors capable of capturing the

stochastic volatility of the interest rates. Thanks to this, these models have been able to

describe and predict the bond yield term structure 3 (see Dai and Singleton 2002, Du↵ee

2002; Collin-Dufresne et al. 2009; Trolle and Schwartz 2009).

Despite the impressive theoretical advances of the yield curve in macroeconomics and

financial economics, a large gap still exists between these two classes of models. Sur-

prisingly, little attention has been paid to analyzing the potential bidirectional feedback

between the yield curve to macroeconomic dynamics. This is particularly true for financial

modeling that does not consider the impact that macroeconomic policies may have on the

yield curve. This paper begins to bridge this gap by formulating and estimating a yield

3There are interesting contributions which combine the two groups of models. For instance, Coroneo et

al. (2011) show that a reduced-form term structure model is compatible with arbitrage-freeness. Instead,

Christensen et al. 2011, 2014 and Mesters et al. 2014 introduce stochastic volatilities in reduced-form

term structure models.
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model that integrates financial and macroeconomic factors. To this end, we introduce an

a�ne model, which is a hybrid Heston model with a local stochastic volatility, to describe

government bond yield dynamics (see Homeschu 2011; Trolle and Schwartz 2009). We es-

timate our stochastic volatility model on German, French, Italian and Spanish bond yields

and on the EONIA interbank rate from 29 March, 2004 to 3 April, 2014. The selected

countries are chosen as being representative of di↵erent geographical areas of the Euro-

zone while the time period considered is relevant due to the presence of di↵erent economic

phases. Furthermore, the introduction of the EONIA interest rate4 allows us to analyze

the e↵ects of the monetary policy not only with respect to the investigated countries but

also with respect to economic phases.

Due to its simplicity and analytical tractability, the model is able to capture changes in

yield volatility and predict future yield values. Its descriptive and predictive abilities are

verified not only on fixed-maturity bonds, but also on bonds with di↵erent maturities. The

reason for this good performance of the model rests on two important features. First, the

derivation of a closed form solution for the cumulative distribution function and explicit

formulas for the moments allow us to e�ciently estimate the model parameters via the

maximum likelihood approach. Second, the assumption of a common stochastic volatility

governing the Eurozone allows us, on the one hand, to simplify the analytical treatment

and, on the other hand, to understand the current interactions among the countries of this

zone.

The model’s good performance in reproducing the yield curve encourages us to further

study the properties of the estimated parameters. The empirical and mathematical results

suggest a strong correlation between the estimated volatility parameters and the instabil-

ity in the government bond yields. Thus, starting from the analysis of these parameters

we are able to build an early warning indicator for significant instabilities. The proposed

indicator identifies three bubbles that anticipate the three episodes of instability charac-

terizing our time series: the sub-prime mortgage, the collapse of Lehman and the sovereign

debt crisis. We also investigate the potential of this indicator on U.S. data (treasury bills).

The results obtained confirm that the calibrated model is able to capture the peculiarity

of the markets analyzed.

Having successfully validated our estimate for in-sample fitting and out-of-sample fore-

casting, we illustrate two other abilities of the model. First, its ability to describe the

relations among European countries and, second, its ability to foresee their reactions to

economic policies or shocks that occur in Eurozone.

In order to address the relationships among the countries investigated we analyze the

4The EONIA interest rate is often seen as a proxy of European monetary policy (see Giannone et al.

2011; Mesters et al. 2014; Lucas et al. 2014).
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dynamics of the specific country volatility which is one of the key model parameters.

This parameter allows us to understand, not only phenomena of convergence (divergence)

among countries, but also their macroeconomic (in)stability. The results of the empirical

analysis indicate a strong co-movement between France and Germany on the one hand,

and Italy and Spain on the other. Moreover, as shown in other empirical studies (see

Mesters et al. 2014) the country volatilities behave di↵erently during the period investi-

gated. In fact, the volatility of all countries dramatically increases during the financial

crisis (2007-2008) while only in Italy and Spain does it remain elevated due to the sovereign

debt crisis (2011-2012).

In order to address the impact of monetary policies on countries, we analyze their reactions

to changes in the EONIA rate. Our empirical analysis reveals that the BCE expansionary

monetary policies have a strong impact in mitigating the instability of the countries in-

vestigated between 2009 and 2011. However, these monetary policies do not seem equally

incisive in alleviating the sovereign debt crisis which negatively a↵ects the two Mediter-

ranean countries.

It is worth noting that the empirical results obtained with our financial model confirm

and reinforce some important findings already highlighted in some recent macroeconomic

models (see Mesters et al. 2014; Afonso and Martins 2012). The fact that financial and

macroeconomic models generate very similar results not only confirms the soundness of

the results, but also the utility of merging the two methodologies. In fact, they should not

be seen in competition, but rather, in Popperian falsifiability.

The rest of the paper is organized as follows. In Section 2 we present the stochastic

volatility model. In Section 3 we introduce the maximum likelihood approach to estimate

the model parameters. We also investigate the robustness of the procedure on simulated

data. In Section 4 we present the numerical experiments on government bond yields.

Finally, in Section 5 we draw conclusions.

2 The multivariate stochastic volatility model

In this section we introduce the stochastic volatility model for yields/interest rates. Let

R+ be the set of positive real numbers, n a positive integer and Rn the n-dimensional real

Euclidean space.

We denote with x
i,t

, i = 1, 2, . . . , n, the stochastic yields/interest rates and with v
t

their variance at time t > 0. We assume that the real vector valued stochastic process
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(x
i,t

, v
t

) is described by the following system of stochastic di↵erential equations:

dx
i,t

= µ
i

dt� m̃

2
�2
i

v
t

dt+ �
i

p
v
t

dW
i,t

, t > 0, i = 1, 2, . . . , n, m̃ = 0, 1, (1)

dv
t

= �(✓ � v
t

)dt+ "
p
v
t

dQ
t

, t > 0, (2)

with initial conditions:

x
i,0 = x̃

i,0, i = 1, 2, . . . , n, (3)

v0 = ṽ0, (4)

where x̃
i,0, i = 1, 2, . . . , n, and ṽ0 are random variables concentrated in a point with

probability one5. The parameters �, ✓, ", �
i

in Eqs. (1)-(2) are suitable real constants

satisfying the following conditions:

✏,�, ✓, �
i

� 0, (5)
2� ✓

✏2
� 1, (6)

while µ
i

is a drift term that, for simplicity, is assumed to be constant in time6. Moreover,

W
i,t

and Q
t

are standard Wiener processes such that W
i,0 = 0, Q0 = 0 while dW

i,t

and

dQ
t

denote their stochastic di↵erentials. Equation (1) depends on the integer m̃ = 0; 1 and

negative values of x
i,t

are allowed. This improves the model’s ability to mimic historical

data. Condition (6) guarantees a positive variance, v
t

, for any t > 0 with probability one

given that v0 is positive with probability one.

Furthermore, we assume that these stochastic di↵erentials satisfy the following condi-

tions:

E(dW
i,t

dQ
t

) = ⇢
v,i

dt, i = 1, 2, . . . , n, (7)

E(dW
i,t

dW
j,t

) = ⇢
i,j

dt, i 6= j, i, j = 1, 2, . . . , n, (8)

E(dW
i,t

dW
i,t

) = dt, i = 1, 2, . . . , n, (9)

E(dQ
t

dQ
t

) = dt, (10)

where E(·) denotes the expected value of ·, and ⇢
v,i

, ⇢
i,j

2 (�1, 1) are constant correlation

coe�cients.

To sum up, the stochastic volatility model (1)-(2) describes the log-price in the Heston

model when m̃ = 1 and n = 1, while for n > 1 and m̃ = 1 it can be interpreted as a

particular case of the model proposed by Trolle and Schwartz (2009).

5For the sake of simplicity, we use x0 and v0 instead of their initial values x̃0 and ṽ0.
6The theoretical results proposed hold under the assumption that µi, i = 1, 2, . . . , n are integrable

functions of time. In the empirical analysis (forecasting exercise) we choose µi to be time dependent as in

Diebold and Li (2006).
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Our interpretation of the parameters of the stochastic volatility model (1)-(2) strictly

depends on two empirical applications:

a) bonds of di↵erent countries with fix-maturity;

b) bonds of one country with several maturities.

In application (a) the process x
i,t

describes the yield of the i� th country and the variance

v
t

, measures the volatility of government sovereign bond yields in a given zone. In the

application (b) x
i,t

describes the yield with the i�th maturity and v
t

is the variance which

drives the entire yield term structure. In addition, the parameter �
i

, which is set equal to

one in the Heston model, describes the specific volatility of the i�th country in application

(a) and of the i� th maturity in application (b). As in Heston 1993, the parameters ✓, �,

✏ identify the long term mean, the speed of mean reversion and the volatility of volatility

(vol of vol) respectively.

We proceed with the analytical treatment of the stochastic volatility model (1)-(2)

defining the transition probability density function, p
f

, of process (x
t

, v
t

), t > 0. Specifi-

cally, the arguments of p
f

include “past” and “future” variables: (x, v, t) = (x1, x2, .., xn, v, t)

are the “past” variables and (x0, v0, t0) = (x01, .., x
0
n

, v0, t0) the “future” ones, since t < t0.

Let us denote with M the marginal conditional probability density defined by:

M(x, v, t, x0, t0) =

Z +1

0
p
f

(x, v, t, x0, v0, t0)dv0 , t0 > t . (11)

Following Du�e, Pan and Singleton (2000) we derive the following integral representation

formula for M :

M(x, v, t, x0, t0) =
1

(2⇡)n

Z

Rn

n
e�ı k

T (x�x

0+(t0�t)µ)e�
v
2 (a(k)�ı c(k))'(t0�t,k)·

e�
2�✓ (t0�t)

✏2
(⌫(k)+⇣(k)) e

� 2�✓

✏2
ln
⇣
1+ (⌫(k)+⇣(k))

2⇣(k) (e�2⇣(k)(t0�t)�1)
⌘�

dk,

t < t0, x, x0 2 Rn, v > 0, (12)

where ı is the imaginary unit, the superscript T denotes the transpose and µ = (µ1, µ2, . . . , µn

).

Formula (12) provides the marginal density M as a Fourier integral where k is conjugate

variable of the yield variable.

The first quantity on the right hand side of Eq. (12) is:

a(k) = kT�k , (13)
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where � is the matrix given by:

�
i,j

=

(
�
i

⇢
i,j

�
j

i 6= j

�2
i

i = j
i, j = 1, 2, . . . , n. (14)

The second quantity is:

c(k) = m̃ kT� , (15)

with � = (�21,�
2
2, . . . ,�

2
n

) 2 Rn. Finally, the quantities ', ⌫, ⇣ are:

'(s, k) =
1� e�2s⇣(k)

(⌫(k) + ⇣(k))e�2s⇣(k) + (⇣(k)� ⌫(k))
, (16)

⌫(k) = � 1

2
(�+ ı ✏ b(k)) , (17)

⇣(k) =


⌫(k)2 +

✏2

4
(a(k)� ı c(k))

�1/2
, (18)

where b is:

b(k) = kT⇢
v

, (19)

and ⇢
v

is:

⇢
v

= (�1⇢v,1,�2⇢v,2, . . . ,�n⇢v,n) . (20)

The reader can find the derivation of the formula for the marginal conditional proba-

bility density function in Appendix A.

Formula (12) involves a n dimensional Fourier integral. Given the special form of the

integrand function, it can be computed using an “ad hoc” Monte Carlo method. However,

we avoid the curse of dimensionality by approximating M using the first two terms of its

series expansion in powers of the vol of vol, ✏, with base point ✏ = 0.

The expansion of the marginal conditional density function in powers of vol of vol, ✏, is

the main mathematical contribution of this paper. It allows us to develop a calibration

procedure capable of detecting “calm” and “turbulent” financial periods. The basic idea is

that in a “calm” financial period, the yield distribution is Gaussian (i.e. ✏ = 0) with time

dependent mean reverting volatility. In contrast, in a “turbulent” period, the distribution

moves abruptly towards something di↵erent from a Gaussian distribution (i.e. ✏ > 0) and

simultaneously large values of the initial stochastic volatility, v0, are estimated. However,

determining these changes in distribution using the analytical expression of the marginal

density is challenging due to the curse of dimensionality. This is the reason for an expansion

of the analytical marginal conditional probability density function in powers of the vol of

vol, ✏. The marginal conditional probability density function is therefore expressed as a

normal density function plus a correction term given by a closed-form expression.
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The expansion method proposed here can obviously be applied to any stochastic volatil-

ity model where the probability density function can be explicitly computed when vol of

vol, ✏, is set to zero. In detail, we assume that the following expansion for M holds:

M(x, v, t, x0, t0) =
+1X

j=1

✏j M
j

(s, x, x0, v), s = t0 � t > 0. (21)

The reader can find the derivation of the analytical formulas of the first two terms, M0,

M1, of the expansion in Appendix B:

M0(s, x, x
0, v) =

1

(2⇡)n/2
e
� 1

2f1(s,v)
(x�x

0+sµ� m̃
2 f1(s,v)�)T��1(x�x

0+sµ� m̃
2 f1(s,v)�)

p
(f1(s, v))n det�

, (22)

M1(s, x, x
0, v) = � f2(s, v)

� @

@v

f1(s, v)

@

@v

nX

i=1

�
i

⇢
v,i

@

@x0
i

M0(s, x, x
0, v), (23)

with

f1(s, v) = ✓ s+ (v � ✓)

✓
1� e�� s

�

◆
, (24)

and

f2(s, v) = (2✓ � v)

✓
s� (1� e�� s)

�

◆
, s > 0, v > 0. (25)

Assuming � to be a positive definite matrix, formulas (22)-(23) are well defined since the

function f1 is positive for any s > 0 and v > 0

It is worth noting that the zero-th order term M0 of the marginal conditional probabil-

ity density function is a Gaussian density function and M1 is defined by using the gradient

of M0. The simple analytical expression of M0 and M1 (see Eqs. (22)-(23)) allows us to

obtain an e�cient approximation of the cumulative distribution function (see Appendix

B):

Pr (x
t=s

 x⇤ |x
t=0 = x0 | v

t=0 = v0) =
nY

j=1

N(y⇤
j

(s, x0, v0))

 
1� ✏

f2(s, v0)

�
p
f1(s, v0)

@

@ v

f1(s, v0)
V (s, v0, y

⇤)

!
(26)

where N(x) = 1p
2⇡

R
x

�1 e�⇠

2
/2d⇠ and the functions V and y⇤

q

, q = 1, 2, . . . , n are given by:

V (s, v0, y
⇤) =

0

@�
@

@ v

f1(s, v)

f1(s, v)
+

nX

q=1

@

@v

N(y⇤
q

(s, x0, v))

N(y⇤
q

(s, x0, v))

1

A ·
nX

i=1

�
i

⇢
v,i

nX

q=1

��1/2
q,i

N(y⇤
q

(s, x0, v))

e�(y⇤q )
2
/2

p
2⇡

+
nX

i=1

�
i

⇢
v,i

nX

q=1

��1/2
q,i

N(y⇤
q

(s, x0, v))

e�(y⇤q )
2
/2

p
2⇡

 
�y⇤

q

@y⇤
q

@v
�

@

@v

N(y⇤
q

(s, x0, v))

N(y⇤
q

(s, x0, v))

!
(27)
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and

y⇤(s, x0, v) =
1p

f1(s, v)
��1/2

✓
x⇤ � x0 � sµ+ f1(s, v)

m̃

2
�

◆
. (28)

Finally, we obtain the analytical expression of the first four conditional moments when

m̃ = 0 and µ
j

= 0, j = 1, 2, . . . , n (see formulas (99)-(101) in Appendix C) and of the first

two moments in the general case (see formulas (102) and (103) in Appendix C).

3 The estimation procedure

In this section we use the maximum likelihood approach to estimate the parameters of

the stochastic model (1)-(2). This model is parameterized by 3 + 3n + n(n � 1)/2 real

quantities, that is the quantities: �, ✓, ✏, µ
i

, �
i

, i = 1, 2, . . . , n, ⇢
v,i

, i = 1, 2, . . . , n, ⇢
i,j

,

i = 1, 2, . . . , n � 1, j = i + 1, i + 2, . . . , n. Moreover, we consider the initial stochastic

volatility v0 as a parameter that must be determined. This is motivated by the fact that

the initial volatility v0 is not observable in the financial markets. Let us formulate the

estimation problem by introducing the set of feasible parameters:

S =
n
⇥ 2 R4+3n+n(n�1)/2, ⇥ = (✏, ✓,�, v0, µi

,�
i

, ⇢
v,i

, ⇢
i,j

), | ✏, �, ✓, v0 � 0,

2�✓

✏2
> 1, �

i

> 0, �1 < ⇢
v,i

< 1, i = 1, 2, . . . , n,

�1 < ⇢
i,j

< 1, i = 1, 2, . . . , n� 1, j = i+ 1, i+ 2, . . . , n} . (29)

Let m
ob

be a positive integer, x̃
i,m

the i-th yield observed at t = t
m

, m = 1, 2, . . . ,m
ob

and x̃
m

= (x̃1,m, x̃2,m, . . . , x̃
n,m

). We choose t
m

< t
m+1, m = 1, 2, . . . ,m

ob

where t
mob+1

denotes the current time.

We consider the (log-)likelihood function given by:

F (⇥) =
1

(m
ob

� 1)

mob�1X

m=1

lnMa(t
m+1 � t

m

, x̃
m

, x̃
m+1, ṽtm+1 |⇥),

⇥ 2 M, q = 0, 1, . . . , (30)

where Ma is as follows:

Ma(s, x, x0, v|⇥) = M0(s, x, x
0, v) + ✏M1(s, x, x

0, v) , ⇥ 2 S, (31)

and M
j

are given in Eqs. (22), (23). We evaluate v
t

via the conditional expected value

✓(1 � e�� (t�tm)) + v
tme

��(t�tm), t
m

 t  t
m+1, where v

t0 = v0 and v0 is the initial

stochastic value which must be estimated (see Trolle et al. 2009, for a similar approach).

We solve the following estimation problem:

max
⇥2S

F (⇥). (32)
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Problem (32) can be stated as follows:

given the observations (x̃1,m, x̃2,m, . . . , x̃
n,m

) at time t = t
m

, m = 1, 2, . . . ,m
ob

, determine

the vector ⇥⇤ 2 S ⇢ R4+2n+n(n�1)/2 that makes these observations “more likely”.

Problem (32) is solved via a variable metric steepest ascent method. Specifically,

starting from an initial guess ⇥0 2 S, the iterative procedure updates the current ap-

proximation of the solution of (32) with a step in the direction of the gradient of the

(log-)likelihood function (30) computed in a suitable metric (see Miglierina et al. 2008;

Pacelli and Recchioni 2000). The estimation procedure can be summarized as follows:

1 set k = 0 and initialize ⇥0;

2 evaluate F (⇥k), if k > 0 and |F (⇥k)� F (⇥k�1)| < ⌘
max

|F (⇥k)|, where | · | denotes
the absolute value of ·, go to step 7;

3 evaluate the gradient of the function F (⇥k);

4 perform the steepest ascent step evaluating ⇥k+1 = ⇥k+ ⌘
k

D(⇥k)rF (⇥k), where

D(⇥k) is a diagonal matrix related to the use of the “variable metric” and ⌘
k

is the

length of the step in the direction D(⇥k)rF (⇥k) which guarantees that F (⇥k) is a

non-decreasing function of k;

5 if ||⇥k+1 �⇥k|| < ⌘
max

, go to step 7;

6 set k = k + 1, if k < M
iter

go to step 2;

7 take ⇥k+1 as the approximation of ⇥⇤ and stop.

The quantity ⌘
max

is a positive fixed tolerance value and M
iter

is the maximum number

of iterations allowed in the optimization procedure.

The solution is determined by solving the same problem starting from several initial points.

Specifically, we explore the feasible region S taking a set of random points belonging to

S and evaluating the objective function at these points. The initial points of the iterative

procedure are the points where the objective function attains its largest values.

We conclude the presentation of the estimation procedure by analyzing the perfor-

mance of the approximation in Eq. (31). This is crucial because Eq. (31) is used in the

formulation of the estimation problem (32). To this end, we set n = 4, m̃ = 0, ✓ = 0.1,

� = 2, �
v,j

= 1, ⇢
v,j

= 0.5, µ
j

= 0, j = 1, 2, . . . , n, ⇢
i,j

= 0, i, j = 1, 2, . . . , n, i 6= j. Fur-

thermore, given that M
a

(s, x, x0, v0|⇥) = M0(s, x, x0, v0) + ✏M1(s, x, x0, v0), we consider
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the following five values of ✏, ✏1 = 0, ✏2 = 0.005, ✏3 = 0.01, ✏4 = 0.05, ✏5 = 0.1 and the

following ten values of v0 and s, v0 = v0,j = 0.2j, s = s
j

= 0.1j, j = 1, 2, . . . , 10. Finally,

we set x = (0.04, 0.1861, 0.0386, 0.365) and x0 = x(1 + h) with h = 1. These parameter

values come from the empirical analysis on the real data (see Section 4).

The accuracy of the approximation M
a

to the marginal conditional density M (see Eq.

(12)) is measured as the average relative error, E
✏

:

E
✏

=
10X

i=1

10X

j=1

����
M(s

i

, x, x0, v0,j)� (M0(si, x, x0, v0,j) + ✏M1(si, x, x0, v0,j))

M(s
i

, x, x0, v0,j)

���� . (33)

The integral, M , in Eq. (12) has been computed using an ad hoc Monte Carlo method

0 0.005 0.01 0.05 0.1
ε
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Ε
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Figure 1: Average relative error, E✏, (see Eq. 33) as a function of ✏, for di↵erent Monte Carlo sample

size, NMC , equal to 104 black solid line, 105 red dotted line, 106 green dashed line and 107 blue long dashed

line. Colors are available on the web site version.

with four di↵erent sample sizes N
MC

(i.e. N
MC

= 104, N
MC

= 105, N
MC

= 106 and

N
MC

= 107).

Figure 1 shows the average relative error E
✏

as a function of ✏ for each of the four Monte

Carlo simulations. The four di↵erent sample sizes, each of which is represented by the

lines in Fig.1, and the five di↵erent values of ✏ allow us to evaluate, on the one hand,

the error of the Monte Carlo approximation and, on the other hand, the error of the

expansion in ✏. Our experiment shows that increasing the Monte Carlo size the value

of E
✏

decreases significantly for ✏  0.01 while it remains substantially unchanged for

✏ = 0.05 and ✏ = 0.1. This means that, for the largest values of ✏, the error is mainly due

to the expansion approximation. However, for smaller values of ✏, the error, E
✏

, decreases

as the sample size, N
MC

, increases. In this circumstance, the error is mainly due to the

Monte Carlo approximation. Finally, the long blue dashed line in Figure 1 shows that

for ✏  0.01 the first order approximation provides at least three correct significant digits
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while it provides only two significant correct digits for ✏ > 0.017.

As shown in the next section, the vol of vol, ✏, estimated from the real data is on average

below 4% and thus we can expect the approximation, Ma, to work satisfactorily on the

empirical studies too.

3.1 The performance of the estimation procedure on simulated data

We now investigate the performance of the estimation procedure and its ability to capture

changes in model parameters.

We simulate the financial time series by integrating numerically Eqs. (1)-(2) through

the explicit Euler discretization scheme with variable step-size less than 10�5. We simu-

late n = 4 bond yield trajectories, x
i,t

, and their stochastic variance, v
t

, over a period of

T = 8(years). Specifically, for each yield we simulate approximately three observations a

day (i.e. about 800 observations a year) corresponding to a total of N
T

= 6400 observa-

tions. Each yield represents a specific country or maturity denoted by C
i

, i = 1, 2, . . . , n.

We divide the simulated period in four time windows of the same length (1600 consecutive

observations). We set the parameters of our benchmark model8 as follows: m̃ = 0, the vol

of vol ✏ = 0.01, the long term mean ✓ = 0.015, the speed of mean reversion � = 0.05. The

specific yield volatility, �
i

and the correlation coe�cient between C
i

and C
j

, ⇢
i,j

, are 0.7

and 0.5 respectively. The initial value of the yields is 0.2 (i.e. x
i,0 = 0.2, i = 1, 2, . . . , 4)

and the drift terms, µ
i

, are set to zero. The correlation coe�cient between the stochastic

variance v
t

and the country/ maturity C
i

is equal to ⇢
v,1 = 0.1, ⇢

v,2 = 0.1 ⇢
v,3 = �0.1,

⇢
v,4 = �0.1. Finally, the initial stochastic volatility v0 is equal to v0 = 0.0015 in the first

and third window (i.e. in years 0-2 and years 4-6 corresponding to 1-1600 and 3201-4008

observations) and v0 = 2.5 in the second and fourth window (i.e. in years 2-4 and years 6-8

corresponding to 1601-3200 and 4009-6400 observations). That is, in each time window

the values of the model parameters are constant with the only exception of the initial

stochastic volatility v0.

We estimate the model parameters by using 400 consecutive observations which means

solving estimation problem (32) sixteen times.

Our estimation problems requires sixteen initial starting points, ⇥0 2 S. They are gen-

erated using the spot volatility estimator by Mancino and Recchioni (2015) which is able

to approximate the yield volatilities (i.e. �2
j

v
t

, j = 1, 2, . . . , 4). By combining these ap-

7When the Monte Carlo sample size, NMC , is equal to 107 (blue long dashed line in Figure 1) the

average relative errors, E✏, are 0.0006, 0.0014, 0.0026, 0.0119 and 0.0251 for each of the five considered

values of ✏ respectively.
8The parameter values of the “benchmark” model come from the empirical analysis on the real data

(see Section 4).
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q v0 (1.5e-3)
1 1.204081e-3
2 1.670453e-3
3 2.150294e-3
4 2.124346e-3
q v0 (2.5)
5 2.467920
6 2.406428
7 2.343765
8 2.268779
q v0 (1.5e-3)
9 1.059292e-3
10 1.333648e-3
11 1.662283e-3
12 1.914864e-3
q v0 (2.5)
13 2.470610
14 2.420748
15 2.371615
16 2.309784
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Figure 2: Left panel: simulated yield time series as functions of time (expressed in years). Right panel:

estimated values of the initial stochastic volatility v0 obtained solving the sixteen calibration problems

indexed by q and “true” values of v0 in brackets.

proximations with equations (1)-(2), we can provide proxies for the full set of the model

parameters.

Figure 2 (left side) shows the simulated time series of each yield. We can observe that

shocks in v0 (years 2-4 and 6-8) generate abrupt changes of the yields. From a mathe-

matical point of view it is quite obvious that an abrupt change in the value of the initial

stochastic volatility, v0, is able to generate strong fluctuations in simulated time series.

However, this simple finding help us in interpreting the results coming from the empirical

analysis proposed in Section 4, where strong fluctuations in the real time series can be

predicted by strong variations in the estimated values of the initial stochastic volatility.

In order to test the performance of our procedure in predicting strong yield fluctuations

we must show our technique well reproduces the abrupt jumps in the parameter.

The performance is shown in the right hand side of Figure 2 where the estimated values

of v0 in the sixteen di↵erent time windows indexed by q are displayed. The table confirms

that the estimation procedure is able to capture the true values of the parameters and

their changes over the entire time interval.

Table 1 shows the robustness of the estimation technique in replicating all the remain-

ing parameters. We want to underline that the “true” values of these parameters are
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Table 1: “True” parameter values (first column); average values and standard deviations of the estimated

parameters (second column); average relative errors of the estimated model parameters (third column).

All the average values are computed by using the 16 estimated values of the parameters coming for the

solution of the estimation problems indexed by q.

Parameter (True) Ave. value (St. Dev.) Ave. relative error

✏ (0.01) 0.0101 (0.0005) 0.0397

✓ (0.015) 0.0148 (0.0004) 0.0304

� (0.05) 0.0494 (0.0013) 0.0242

�1(0.07) 0.0691 (0.0023) 0.0281

�2 (0.07) 0.0709 (0.0024) 0.0269

�3 (0.07) 0.0699 (0.0024) 0.0248

�4 (0.07) 0.0699 (0.0023) 0.0265

⇢v,1 (0.1) 0.0911 (0.0383) 0.2696

⇢v,2 (0.1) 0.1011 (0.0312) 0.2316

⇢v,3 (-0.1) -0.0959 (0.0261) 0.1945

⇢v,4 (-0.1) -0.1003 (0.0292) 0.1824

⇢1,2 (0.5) 0.4960 (0.0401) 0.0079

⇢1,3 (0.5) 0.4775 (0.0405) 0.0448

⇢1,4 (0.5) 0.4951 (0.0326) 0.0098

⇢2,3 (0.5) 0.4978 (0.0393) 0.0043

⇢2,4 (0.5) 0.5012 (0.0309) 0.0024

⇢3,4 (0.5) 0.4932 (0.0409) 0.0135

constant over the time windows. For this reason Table 1 shows the average over q of the

estimated parameter values. To complete this analysis, the third column of Table 1 shows

the average relative errors of the parameters which is computed as follows:

E
z

=
1

16

16X

q=1

|z
q

� z⇤|
|z⇤| , (34)

where z⇤ is the true value of the investigated parameter and z
q

the estimated value of z⇤

obtained solving the q-th estimation problem. We observe that all parameters are approx-

imated with at least two correct significant digits except for the correlation parameters

⇢
v,i

which are approximated with only one correct significant digit.

4 The performance of the estimation procedure on empiri-

cal data: an analysis on bond yields

In this section we study the ability of the stochastic volatility model to describe bond

yields. Specifically, we face two kinds of problems. One is calibrating the model on di↵erent

yields having the same maturity (see application (a) in Section 2). Here the analysis focuses
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on the interactions among di↵erent countries belonging to the same geographical area with

the aim of analyzing convergence/divergence of sovereign yields in Europe and developing

an early warning indicator. The other is calibrating the model on German yields with

di↵erent maturities (see application (b) in Section 2). This second analysis allows us to

verify the robustness of the calibrated model in reproducing the stylized facts of the yield

curves.

4.1 The analysis of government bond yields in the Eurozone

In this experiment we calibrate the stochastic volatility model (1)- (2) on four yields rep-

resenting di↵erent European countries and on the EONIA interbank rate which can be

considered as a proxy of the European monetary policy (see Giannone et al. 2011, Mesters

et al. 2014). Here x
i,t

, i = 1, 2, . . . , 4, denote the yields of the four European countries

and x5,t denotes the EONIA rate at the current time t.

We use the daily values of four bond yields with three month maturity: the German

GETBT1 index (Germany 3 Month Bubill Maturin), the French GBTF3MO index

(France Treasury Bills 3 Months), the Italian GBOTG3M index (Italy Bots Treasury Bill

3 Months) and the Spanish GSPG3M index (Spanish Govt Generic Bonds 3 Months)9.

We have chosen these yields because they represent di↵erent geographical areas of the

Eurozone. The data run from 29 March, 2004 to 3 April, 2014, corresponding to 2617

trading days.

Figure 3 shows the percentage of the yield time series (left panel) and of the EONIA rate

(right panel) used in the calibration procedure. In simplified terms, the time series con-

sidered can be distinguished in several phases: first, a pre-crisis phase, stretching until the

beginning of 2006, in which bond yields and EONIA are quite stationary and no large dis-

crepancies among countries are observable; second, a phase of tension where the economic

system comes under pressure from uncertain valuations of the sub-prime mortgages which

lead to an increase of the indices and the interbank interest rate; third, a phase starting

with the collapse of Lehman Brothers in September 2008, resulting in an abrupt collapse

of all series; and, finally, a phase beginning with the outbreak of the sovereign debt crisis

in May 2010 (see Eser et al. 2012 for further details). This phase puts some economic

systems in the Eurozone area under enormous stress due to their exposure to sovereign

debt. This last phase is reflected in the rise of Italian and Spanish yields and peaks at the

end of 2011, when the yields of these two Mediterranean countries diverge from those of

other European countries.

Figure 3 gives us further important information: the minimum value of the GETBT1

9The three month yield data are from Bloomberg and the EONIA data are freely downloadable from

http://www.emmi-benchmarks.eu/euribor-eonia-org/eonia-rates.html.
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index (Germany), GBTF3MO index (France) and the EONIA rate are negative and equal

to �0.205, �0.105 and �0.205 respectively. This implies that by calibrating m̃ in the

stochastic volatility model (1)- (2), the parameter should return a value equal to zero,

which allows for negative yields. In confirmation of this, the value of m̃ which maxi-

mizes the likelihood function is zero. Consequently, in this experiment, we calibrate the

stochastic volatility model with m̃ = 0.

Figure 3: Three month yield GETBT1 index (Germany), GBTF3MO index (France), GBOTG3M index

(Italy), GSPG3M index (Spain), left side; EONIA interbank rate, right side, as function of time.

4.2 The estimation procedure

In order to estimate the model parameters we use a time window with m
obs

number of

consecutive observations for each of the five series. Specifically, the model parameters are

calibrated every month using a year of past observations (i.e. m
obs

= 260). After each

month, we solve the calibration problem again adding the 22 new daily observations and

discarding the 22 oldest ones. In this manner the length of the time window used in the

calibration is kept constant. Hence, we solve 105 calibration problems and the solution of

these problems provide a monthly historical series of each model parameter.

Table 2 shows average values and standard deviations of the model parameters ob-

tained by the estimation procedure. Specifically, the confidence interval of the estimated

values of the parameters in Table 2 are obtained running 100 trajectories for each index.

These trajectories are obtained perturbing each index by adding a noise sampled from

a normal distribution with zero mean and standard deviation given by �
n

= ⇠ �
s

. The

quantity �
s

is the standard deviation of the observed data and ⇠ is a constant also known

as “noise to signal ratio” (see, for example, Nielsen and Frederiksen 2007, Recchioni et al.

2015). We set the noise to signal ratio, ⇠, equal to 1%. For each of the 100 trajectories we

solve 105 calibration problems and the results are shown in the Table 2. The first column

of the Table lists the names of the parameters. Here, the indices G, F, I, S and E refer

to Germany, France, Italy, Spain and EONIA respectively. The values shown in Table 2
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Table 2: Parameter name (first column); average values of the parameters (second column); average

standard deviations of the estimated parameters (third column). All the average values are computed by

using the 105 estimated values of the parameters coming for the solution of the estimation problems on

the 100 trajectories.

Parameter name Ave. value Ave. St. Dev.

✏ 0.0142 0.00001

✓ 0.014031 0.0000016

� 0.04984 0.0000071

v0 0.49303 0.0062056

�G 0.8524 0.003948

�F 0.8169 0.004632

�I 2.2088 0.001066

�S 1.6490 0.006435

�E 2.2181 0.00626

⇢v,G 0.03253 0.000031

⇢v,F 0.01977 0.000031

⇢v,I 0.04141 0.000015

⇢v,S 0.02711 0.000041

⇢v,E 0.09795 0.000016

⇢G,F 0.0992 0.001194

⇢G,I 0.0159 0.000777

⇢G,S 0.0775 0.001495

⇢G,E -0.0021037 0.0007807

⇢F,I 0.02820 0.0007873

⇢F,S 0.081493 0.001818

⇢F,E 0.00857 0.0008217

⇢I,S 0.07518 0.000969

⇢I,E 0.0008828 0.0004008

⇢S,E 0.032588 0.001141

confirm that all parameters are statistically significant.

In order to assess the robustness of our estimation procedure, we evaluate the sensitivity

of the estimated parameter values (see Table 2) first with respect to the number of obser-

vations, m
obs

, used in the time window and, second, to the EONIA e↵ect.

Firstly, we estimate the model parameters in a time windows of m
obs

= 130 observa-

tions. We compare these values with those obtained with m
obs

= 260 by applying the

two-sample Kolmogorov-Smirnov (KS) goodness-of-fit hypothesis test. The test confirms

that the historical series of model parameters, estimated using the two samples, are drawn

from the same population at a significance level of 0.05.

Secondly, we analyze the robustness of the parameters shown in Table 2 with respect to
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the EONIA. In this regard, we estimate the stochastic volatility model (1)- (2) without

the EONIA. As in the previous case, we compare the time series of the new estimated

values with those with the EONIA by implementing the KS test at a significance level of

0.05. Also in this case, the KS test never rejects the null hypothesis10. The fact that the

estimated values of the model parameters do not vary when introducing EONIA indicates

the model’s ability to describe the market behavior through the parameter values. Given

that the introduction of the EONIA does not generate di↵erent information from that

obtained using only the four bond yields we can conclude that the stochastic volatility

model already fully captures all the information contained in the data. The EONIA, in

fact, commonly accepted as a measure of the ECB’s non-standard monetary policy (see

Borio and Disyata 2010), must somehow already be included in the yield time series and,

therefore, should not generate significant changes in the parameter estimation.

We now analyze the model ability to fit the empirical data distributions. Thanks to

Eqs. (99)-(101), we are able to compute the expected value, the variance, the skewness

and the kurtosis (see Appendix C for the analytical derivation of moments). In Table 3

we compare the theoretical moments with the empirical ones arising from the yield and

EONIA time series.

Table 3: Empirical and theoretical moments of monthly yields.

empirical (theoretical) moments Mean Variance Skewness Kurtosis

Germany (%) 1.545 (1.526) 2.026 (2.027) 0.367 (0.368) -1.411(-1.414)

France (%) 1.633 (1.615) 1.984 (1.967) 0.369 (0.372) -1.383 (-1.382)

Italy (%) 2.018 (1.970) 1.480 (1.470) 0.376 (0.420) -1.147 (-1.139)

Spain (%) 1.989 (1.957) 1.403 (1.421) 0.393 (0.423) -1.112 (-1.127)

Eonia (%) 1.727 (1.684) 1.922 (1.899) 0.376 (0.383) -1.344 (-1.361)

As the reader can see, the theoretical moments reproduce the empirical ones very well.

4.3 Bi-directional relationship across European countries

A relevant question, notably for policy makers, is what are the relations among European

countries and how can these relations be expressed through the sovereign yield curves.

Since the creation of the Euro, the literature has analyzed the reactions of the di↵erent

countries to common economic policies or shocks that have hit the Euro area. Most of

10The KS test results of each experiment and their p value are available under request.
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the analyses have focused on the convergence (divergence) of government bond yields in

Europe, especially those of the Euro area countries (see e.g Attinasi et al. 2011; Haugh

et al. 2009; Sgherri and Zoli, 2009; Manganelli and Wolswijk, 2009; Barrios et al. 2009,

Rault and Afonso, 2011; Afonso and Strauch, 2007).

We contribute to this literature by analyzing the interlinkages among the Euro countries

investigated, their reaction to a common monetary policy and to various shocks that have

hit the European economies since 2004. In this regard we study the specific country

volatility, �
j

, since, as suggested by the empirical and theoretical literature, the volatility

describes the macroeconomic uncertainty very well. In fact, many economies that have

experienced a dramatic increase in volatility have also showed a greater economic vulner-

ability and uncertainty (see Baum et al. 2004; Ghosal & Loungani, 2000; Grilli et al.

2014a, 2014b).
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Volatilities σj, j=1,2,...,5

EONIA
Germany
France
Italy
Spain

�EONIA �Germany �France �Italy �Spain

�EONIA 1 0.3177 0.2773 -0.6448 -0.5054

�Germany 0.3177 1 0.7509 0.2626 0.1273

�France 0.2773 0.7509 1 -0.0088 -0.1872

�Italy -0.6448 0.2626 -0.0088 1 0.7943

�Spain -0.5054 0.1273 -0.1872 0.7943 1

Figure 4: Time series of the average volatilities, �j , of EONIA (blue square line), Germany (green

solid line), France (red dashed line), Italy (cyan dash-dotted line) and Spain (violet dotted line) over 100

trajectories (left side). Correlations among the specific volatilities at a 5% confidence level (right side).

Colors are available on the web site version.

Figure 4 (left side) shows the time series of the specific country volatilities. As men-

tioned above, the parameter time series is obtained by solving 105 estimation problems for

each of the 100 trajectories. Figure 4, therefore, shows the average value of the estimated

�
j

over 100 simulations. As the figure shows, the volatilities of Germany, France and

Spain are very similar and remain low until 2008. By contrast, Italy’s gross national debt

increases between 2005 and 2006 (see Erber 2011) and this results in a volatility bubble in

our model (see dash-dotted line in the left panel of Fig. 4). The turbulence in the financial

markets is evident after the crisis of 2008. In fact, we can see a sharp rise in volatility first
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in Germany and, then, in the other countries. The bubble reaches its maximum at the

end of 2009 when the European central bank intervenes by injecting liquidity and cutting

the refinancing rates (see Eser et al. 2012). The action of the ECB corresponds, on the

one hand, to a rapid decrease in bond yield volatilities of the Eurozone, and on the other

hand, to a sharp rise in the EONIA volatility. This situation remains unchanged until

the first quarter of 2011, when the volatility of Italy and Spain dramatically increases

due to the sovereign debt crisis. Last but not least, it is worth noting that during the

sovereign-debt crisis the French and German yield volatility returns to approximately the

pre-crisis level. In contrast, the Spanish specific volatility parameter continues to increase

in the first months of 2014, suggesting that this country is still under pressure. Similar

results are also observed in the empirical study of Mesters et al. (2014).

The financial crisis is a clear case of materialisation and propagation of systemic risk.

Furthermore, in the Euro area, the systemic risk has generated contagion which plays a

crucial role in exacerbating the sovereign debt problems. Contagion is, in fact, a source

of externality. The high volatility exhibited in the sovereign yield curves may be caused

indirectly by spillovers originating in other sovereign countries.

In order to understand the hidden relationship among the sovereign country debts, we

investigate the correlation among the specific volatility time series (see right panel of Fig.

4). We can observe a high correlation, equal to 0.75, between the volatility of Germany

and France, suggesting a strong two-way interaction between government finances. More-

over, correlations suggest that Germany holds significant amounts of Italian and Spanish

sovereign bonds on its balance sheets. These exposures may easily lead to valuation losses

and solvency concerns when sovereign yields rise sharply. On the other hand, France is

negatively correlated with the volatilities of Italy and Spain indicating that this country

is not a↵ected by the risk in these two Mediterranean countries. Last but not least, the

negative correlations between the EONIA volatility and the volatilities of the two Mediter-

ranean countries indicate that the ECB monetary policies have lowered the riskiness of

these two countries.

4.4 An Early Warning indicator

We now analyze the importance of the estimated volatility parameters, v0, ✏, in capturing

the instability in the government bond yields. Specifically, starting from the analysis of

these parameters, we build an early warning indicator for crises. As already mentioned,

the two parameters reflect the initial volatility and the volatility of volatility. By setting

✏ = 0 in Eq. (2), we obtain an ordinary di↵erential equation whose solution is the variance

of the yields given by: v
t

= v0e
��(t�t0) + ✓

�
1� e��(t�t0)

�
, where t0 is the initial time and
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v0 is the initial volatility. In this circumstance, therefore, the volatility is deterministic

(i.e. the market is in a “calm” situation) and the variance is known. Clearly, even when ✏

equals zero an increase of v0 implies an increase of v
t

and this generates a positive/negative

change in the yield movement. However, a positive value of ✏ indicates turbulence in the

variance and this can be an indicator of the market instability.
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Figure 5: Time series of the average initial volatility, v0, (left side) and average re-scaled vol of vol,

✏, (right side) over 100 trajectories (red dotted lines). Time series of yields variation of EONIA (blue

square line), Spain (green solid line) and Germany (violet dashed line). Colors are available on the web

site version.

Figure 5 shows the time series of the estimated volatility parameters, v0 (left side) and

the re-scaled11 ✏ (right side), with the corresponding yield variations12. As the empirical

analysis shows, v0 (red dotted line in the left panel of Fig.5) is a↵ected by the yield

variations, with a good ability to predict their negative changes. This parameter, in

fact, anticipates the two major yield downfalls that occur at the end of 2008 and 2011.

Otherwise, ✏ (red dotted line in the right panel of Fig.5) increases only in the presence of

positive yield variations, while it is zero for negative variations. In order to simultaneously

capture the two e↵ects, we consider the product v0✏. The left hand panel of Figure 6 shows

the time series of v0✏ (red dotted line) and the yield variations.

The product of the two parameters, ✏ v0, identifies three bubbles: the first one peaks

around June 2007, the second one peaks in the first months of 2008 and the last one

increases in the beginning of 2011 and attains its maximum at the end of that year.

11The vol of vol ✏ has been re-scaled to make the figure more readable. Here, to understand the magnitude

of the parameter, we report its summary statistics: mean 0.014, median 0.010, min 0, max 0.036 and st.dev

0.013.
12We omit the yield variations of Italy and France, on the one hand, to make the figure more readable;

on the other hand, because very similar to those of Spain and Germany, respectively.
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Correlation Lag ⌧ = 0 Lag ⌧ = 1 Lag ⌧ = 2 Lag ⌧ = 9

Eonia t - Indicatort�⌧ 0.5229 0.5337 0.5445 0.3632

Germany t - Indicatort�⌧ 0.4473 0.4762 0.4989 0.4050

France t - Indicatort�⌧ 0.4810 0.5040 0.5226 0.4062

Italy t - Indicatort�⌧ 0.7103 0.6140 0.5829 0.3522

Spain t - Indicatort�⌧ 0.6845 0.6167 0.6016 0.3795

Figure 6: Left panel: Time series of the re-scaled product v0✏ (red dotted lines) and yields variation

of EONIA (blue square line), Spain (green solid line) and Germany (violet dashed line). Right panel:

correlations between the yield variations and the indicator v0,t�⌧ ✏t�⌧ , with ⌧ = 0, 1, 2, 9. Colors are

available on the web site version.

Interestingly, the three bubbles seem to anticipate the three episodes of tension which

characterize our time series. That is, the sub-prime mortgage, the collapse of Lehman

Brothers and the sovereign debt crisis.

In order to verify whether this product can be considered an indicator capable of an-

ticipating the instability of the Eurozone, we measure the correlations between the time

series of the yield variations and the lagged time series of this product. The right hand

side of Figure 6 shows these correlations. As the reader can notice, correlations increase

at one-two lags (i.e. one-two months) before the abrupt change in the yields and they

decrease at zero lag. In contrast, the correlations in the case of Italy and Spain remain

high even at zero lag, demonstrating that these are areas of high instability.

In order to test the predictive power of the indicator, v0✏, we repeat the same exercise on

the U.S market. The technique is as in the previous experiment, with the only exception

that the data are now the U.S. treasury bills with di↵erent maturities. Therefore, the

variables x
i,t

, i = 1, 2, . . . , 5 denote, respectively, the 3-month (x1,t), 6-month (x2,t), 1-

year (x3,t), 2-year (x4,t) and 5-year (x5,t) yields at time t as in application (b) in Section

2. The dataset considered13 covers the period from 29 March 2004 to 11 December 2014,

which is slightly longer than the one used for the European indicator running from the 29

13Data are freely downloadable from the website: http://www.federalreserve.gov/releases/h15/data.htm.

We consider treasury constant maturity series. These yields on actively traded non-inflation-indexed

issues are adjusted to constant maturities. The historical adjustment factor can be found at

www.treasury.gov/resource-center/data-chart-center/interest-rates/.
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March 2004 to 3 April 2014. Given the di↵erent structure of the U.S. data in terms both

of business cycles and maturities, this experiment allows us to investigate the robustness

of the early warning indicator in a di↵erent framework.

The left panel of Fig. 7 shows the time series used to estimate the model parameters.

The middle panel shows the early warning indicator of the U.S. market as a function of

time. As for the Eurozone, the indicator is given by the product between v0 and ✏. We

note that the U.S. indicator is able to anticipate the two main turbulences in the U.S fi-

nancial market, namely the tension characterizing the sub-prime mortgage with a bubble

in the middle of 2007 and a second peak in the first months of 2008 corresponding to the

collapse of Lehman Brothers. By comparing the American and European14 indicators,

shown in the right panel of Fig.7, we also notice how the U.S. crisis is more severe during

these two episodes. During the two periods, in fact, the U.S indicator reaches peaks much

higher than those of the European one. Moreover, as expected, the American indicator is

not a↵ected at all by the sovereign debt crisis which instead so much a✏icts Europe. Last

but not least, it is worth noting that the U.S. indicator increases again at the end of 2014.

This may indicate a new phase of instability in the U.S market. In this respect, nothing

can be said on the European financial market given that the data only go up to the early

months of 2014.
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Figure 7: U.S. treasury bills (left panel); U.S. early warning indicator (middle panel) and

E.U indicator (right panel) as function of time.

To conclude the section, we verify the capacity of the U.S. warning indicator to antic-

ipate the instability of the American market. To this end, Table 4 shows the correlations

between the time series of the yield variations for each maturity and the lagged time se-

14The E.U. indicator in the right panel of Fig.7 corresponds to Fig.6 but without rescaling the volatility

parameters.
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ries of the indicator. As is clear, the correlation is positive for each yield but decreases

with increasing maturity. Moreover, as the correlations indicate, only the three-month

yields have anticipatory power. In fact, their correlations increase at one lag (i.e. one

month) before the abrupt change in the yields, and they decrease at zero lag. For yields

at higher maturity, however, the correlation decreases with lag, thus implying that the

indicator signals the crisis when it is already in place. This result is open to two possible

interpretations. On the one hand, short-maturity yields are considered more risky and

therefore more related to market sentiment. On the other hand, investors perceive the

two periods of economic turmoil as short-run events which do not a↵ect the American

long-run fundamentals.

Table 4: Correlations between the U.S. treasury bills variations and the indicator.

Correlation Lag ⌧ = 0 Lag ⌧ = 1 Lag ⌧ = 2 Lag ⌧ = 9

3�month t - Indicatort�⌧ 0.5599 0.5691 0.5642 0.4544

6�month t - Indicatort�⌧ 0.5549 0.5523 0.5429 0.4382

1� year t - Indicatort�⌧ 0.5431 0.5343 0.5215 0.4331

2� year t - Indicatort�⌧ 0.5060 0.4993 0.4920 0.4361

5� year t - Indicatort�⌧ 0.3226 0.3127 0.3117 0.1475

4.5 The analysis of German government bond yields with di↵erent ma-

turities

In this subsection we illustrate some preliminary results regarding the capacity of our

stochastic volatility model to reproduce the bond yield term structure. Specifically, we

show the model’s robustness in estimating and forecasting bond yields with di↵erent ma-

turities. To this end we calibrate our stochastic volatility model to German bond yields

with three month, two and five year maturities. The estimation procedure is analogous

to the one illustrated in Section 4.2 but with two important di↵erences: (i) the variables

x
j,t

, with j = 1, 2, 3, now denote the 3-month, 2-year and 5-year German yields at time t

as in application (b) in Section 2 and (ii) the drift terms, µ
i

, are no longer set to zero but

are integrable functions of time. Specifically, following Diebold and Li 2006, we choose

the drift terms as follows:
Z

s

0
µ
j

(s0)ds0 = �1,s + �2,s

✓
1� e��s ⌧j

�
s

⌧
j

◆
+ �3,t

✓
1� e��s ⌧j

�
s

⌧
j

� e��s ⌧j

◆
, j = 1, 2, 3, (35)

where ⌧1 = 3/12, ⌧2 = 2, ⌧3 = 5 are the yield maturities expressed in years, parameters

�1,s, �2,s and �3,s represent, respectively, a long-term, a short term and a medium term
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factor, and �
s

governs the exponential decay rate.

As in the previous experiment, we calibrate the model parameters each month using

a year of past observations (i.e m
obs

= 260). Moreover, the dataset period is from 29

March 2004 to 3 April 2014 (i.e 2617 trading days) as in Subsection 4.1. In contrast to

the previous experiment, the value of m̃, which now maximizes the likelihood function, is

equal to 1. Consequently, in this experiment, we calibrate the stochastic volatility model

with m̃ = 1. This di↵erence is motivated on the one hand by the di↵erent dataset now

incorporating long maturity yields which are not negative and, on the other hand, by the

di↵erent model now including the drift terms.

Table 5 shows average values and standard deviations of the model parameters obtained

by the estimation procedure on German government bond yields. The three month, two

and five year maturities are denoted by 3m, 2y and 5y, respectively. As in Table 2, the

average standard deviations of the estimated parameters are obtained running 100 trajec-

tories for each yield. The low values of the standard deviations confirm the robustness

Table 5: Parameter name (first column); average values of the parameters (second column); average

standard deviations of the estimated parameters (third column). All the average values are computed by

using the 105 estimated values of the parameters coming for the solution of the estimation problems on

the 100 trajectories.

Parameter name Ave. value Ave. St. Dev.

✏ 0.0125 0.00053

✓ 0.0149 0.0000095

� 0.0495 0.000012

v0 1.2859 0.009460

�3m 1.0296 0.004756

�2y 0.9619 0.0023342

�5y 0.9798 0.0013048

⇢v,3m 0.0217 0.00039

⇢v,2y 0.0232 0.00075

⇢v,5y 0.0219 0.00025

⇢3m,2y 0.1741 0.00433

⇢3m,5y 0.1712 0.00621

⇢2y,5y 0.2548 0.00951

�1 0.0119 0.00134

�2 0.0264 0.00323

�3 -0.0482 0.000191

� 0.00007 0.00003

of the model parameter estimation. Having successfully proven that our model correctly

interprets the bond yield term structure, we now test its ability to forecast. In this regard,

we present the one-month-ahead forecast values on the German government bond yields.
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Figure 8: Left Panels: Observed and one month ahead forecast German yields with three month (top

row), two and five years (central and bottom rows). Right Panel: Relative errors of the one month ahead

bond yield forecasts shown in the left panels. Relative errors of three month yield forecasts in blue dotted

line, of two year yield forecasts in green dashed line and five year yield forecast in dashed-dotted line.

Colors are available on the web site version.

Specifically, we use the estimated model parameters at time t to forecast the yields at

time t + � t, with � t = 22/260. The forecast of yields, x
j,t+� t

, is computed using the

following equation:

x̂
j,t+� t

= x
j,t

+ �1,t + �2,t

✓
1� e��t ⌧j

�
t

⌧
j

◆
�2,t + �3,t

✓
1� e��t ⌧j

�
t

⌧
j

� e��t ⌧j

◆

�1

2
�2
j

✓
✓� t+ (v0 � ✓)

(1� e��� t)

�

◆
, j = 1, 2, 3. (36)

It is worth noting that when m̃ 6= 0 and µ
j

6= 0, Eq. 36 represents the conditional expected

value of the stochastic model as shown in Eq. 102. The three panels on the left in Figure 8

show the forecast and true values of the yields for each maturity (i.e three month (top), two

and five years (middle and bottom)). As shown in Figure 8, a forecasting process obtained

by the conditional expected value of the stochastic model fits the observed values for all

yields quite well. The accuracy of our forecasts is displayed in the right panel of Fig. 8,

where we show the relative errors of one-month-ahead yield forecasts. Specifically, the

panel shows the quantities e
r,t

= |x̂
j,t+� t

� x
j,t+� t

|/|x
j,t+� t

| versus t, t = 0, 1, . . . , ⌧ .

Note that the larger relative errors are strongly a↵ected by the turbulence in the yield

time series. Specifically, the magnitude of the relative errors significantly increase at the

end of 2008 with the collapse of Lehman Brothers. A similar situation occurs at the end

of 2011, with the beginning of the sovereign debt crisis. However, we stress that the

average relative error is 0.0276. This means that, on average, the forecast values have
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Results using the forecast in Eq. (36).

yield maturity R2 �0 �1 P

3 months 0.9962 -0.1112 1.0296 0.9950

2 years 0.9973 -0.2235 1.0520 0.9918

5 years 0.9966 -0.1257 1.0283 0.9944

Results using the naive forecast in Eq. (37).

yield maturity R2 �0 �1 P

3 months 0.9886 -0.4223 1.1060 0.9608

2 years 0.9923 -0.4339 1.1036 0.9432

5 years 0.9907 -0.4075 1.0978 0.8697

Table 6: Results from regression (38) and the measure P using the forecast in Eq. (36)

(top panel) and in Eq. (37) (bottom panel).

two significant correct digits (i.e the average relative error is smaller than 5 · 10�2). The

relative errors shown in Figure 8 indicate that the forecast values are able to match the

observed prices even when they are a↵ected by abrupt changes. Moreover, the results of

one-month-ahead forecast values obtained using formula (36) are compared with those of

a naive forecast. Specifically, the naive forecast, which just states that tomorrow will be

like today, can be written as:

x̂n
j,t+� t

= x
j,t

, j = 1, 2, 3. (37)

We compare the informational content of forecasts obtained through the two mentioned

equations via the regression-based method test (see Poon and Granger 2003). We regress

the “actual” observed xo
j,t+�t

, on the forecast, x̂f
j,t+� t

as follows:

xo
j,t+�t

= �0 + �1 x̂
f

j,t+� t

+ ⇠
j,t+� t

, j = 1, 2, 3, (38)

where x̂f
j,t+� t

is or the forecast obtained via Eq. (36), or the naive forecast in Eq. (37).

As stressed in Poon and Granger 2003, three conditions are required to obtain a good

prediction. Firstly, the forecast is reliable when the R2 in the regression approaches one.

Secondly, the prediction is unbiased if �0 and �1 approach zero and one, respectively.

Thirdly, the explanatory power of the forecasts15 is high when P = 1�
P

t(x
o
j,t+� t�x

f
j,t+� t)

2

P
t(x

o
j,t+� t�µx)2

is close to one16.

Table 6 shows that the forecasting process obtained using the conditional expected

value satisfies all three conditions of reliability and always outperforms the naive forecast.

15The explanatory power of forecasts is defined as a comparison between the amount of variation in the

forecast errors and the variation in the observed yields.
16
µx in P is the mean value of the observed yields.
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As previously mentioned, this is only a preliminary analysis on the use of this model

to study the term structure of yields. However, the results seem to be encouraging.

5 Concluding remarks

In this paper we have presented a hybrid Heston model with local volatility. The model is

analytically tractable, allowing us to derive the marginal conditional probability density

function and explicit elementary formulas for the moments of the yield variables. Further-

more, in order to to cope with the curse of dimensionality that arises when an e�cient

calibration of the model is necessary, an expansion of the marginal conditional probabil-

ity density function is proposed. This perturbation approach can be applied to several

stochastic models and allows reliable time series of the model parameters to be obtained,

which in turn provide us with two contributions.

We conducted an empirical analysis on two di↵erent datasets in order to asses the

ability of the stochastic volatility model to describe and forecast bond yields. The first

dataset consists of the three month government bond yields in the Eurozone (i.e. Germany,

France, Italy and Spain) plus the EONIA interbank rate; the second one consists of German

government bond yields with di↵erent maturities (i.e. three months, two and five years).

The empirical analysis on the first dataset shows that the model captures changes in the

yield volatility and predicts future bond values very well.

This is mainly due to the simplicity of the model which, being analytically tractable,

has allowed us to e�ciently estimate the parameters via the maximum likelihood approach.

The ability of the estimation procedure to capture the parameters and their changes over

the time period considered has also been assessed on simulated time series mimicking the

real data volatility, which confirmed the reliability of the results obtained.

Furthermore, we tested the ability of our procedure to reproduce some well-known phe-

nomena of convergence/divergence among European countries. Our results confirm some

empirical evidence already illustrated in other studies (see Mesters et al. 2014).

Last but not least, we analyzed the capacity of the estimated volatility parameters

to capture and anticipate the instability of the government bond yields. To this end, we

have developed an early warning indicator, which seems to be able to anticipate phases of

instability characterizing our time series. In order to better assess the performance of this

indicator, it was tested on U.S. treasury bills with various maturities (3-month, 6-month,

1-year, 2-year and 5-year). The results of the empirical analysis on the U.S. data confirm

the ability of the indicator in anticipating periods of strong financial instability.

The analysis on the second dataset (i.e. German bond yields with di↵erent maturities)

is only preliminary. However, these preliminary results confirm the validity of the hybrid

Heston model in interpreting bond yield term structure. In fact, also in this experiment,
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the model is able to describe and forecast bond yields. This preliminary analysis will be

the object of future research.
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Appendix A: An integral formula for the marginal conditional

density M

We derive the integral representation formula for the marginal probability density M in

Eq. (12). Following Du�e, Pan and Singleton 2000, the Fourier transform, M̂ , of the

marginal conditional density M in Eq. (11), is given by:

M̂(s, k, v) =

Z

Rn

eı k
T (x�x

0)M(x, v, t, x0, t0)dx0 =

t < t0, t, t0 > 0, s = t0 � t > 0, k 2 Rn, v > 0 , (39)

and is the solution of the following problem:

@M̂

@s
= ✏2

v

2

@2M̂

@v2
� ı ✏ v b(k)

@M̂

@v
+ �(✓ � v)

@M̂

@v
�
hv
2
(a(k)� ı c(k)) + ı kTµ

i
M̂ ,

(40)

with the initial condition:

M̂(0, k, v) = 1 . (41)

As suggested in Du�e, Pan and Singleton 2000, we seek M̂ in the following form:

M̂(s, k, v) = eA(s,k)�vB(s,k), s > 0, k 2 Rn, (42)

where A and B are functions satisfying the following conditions:

A(0, k) = B(0, k) = 0, k 2 Rn. (43)

In order to determine A, B, we substitute Eq. (42) into Eq. (40). As a consequence, A

and B satisfy the following ordinary di↵erential equations:

d

ds
A(s, k) = �� ✓B(s, k)� ı kTµ, (44)

d

ds
B(s, k) = �✏

2

2
B2(s, k)� (�+ ı ✏ b(k))B(s, k) +

1

2
(a(k)� ı c(k)), (45)
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with initial conditions:

A(0, k) = 0, k 2 Rn , (46)

B(0, k) = 0, k 2 Rn. (47)

Now we solve the ordinary di↵erential equations (44), (45) using a standard technique.

We look for the solution of Eq. (45) in the following form:

B(s, k) =
dC

ds

(s, k)

C(s, k)
, s > 0, k 2 Rn. (48)

By substituting Eq. (48) into Eqs. (45) and (47), we obtain C as the solution of the

following problem:

d2

ds2
C + (�+ ı ✏ b(k))

d

ds
C � ✏2

4
(a(k)� ı c(k))C = 0, (49)

with initial conditions:

C(0, k) = 1,
dC

ds
(0, k) = 0, k 2 Rn . (50)

By solving problem (49), (50) we obtain:

C(s, k) =
(⇣ + ⌫)

2⇣
e(⌫�⇣)s +

(⇣ � ⌫)

2⇣
e(⌫+⇣)s, s > 0, k 2 Rn , (51)

and

B(s, k) =
2

✏2
(⇣2 � ⌫2)(1� e�2s⇣)

(⌫ + ⇣)e2s⇣ + (⇣ � ⌫)
, (52)

where ⌫ and ⇣ are in Eqs. (17)-(18). By using Eq. (48) into Eq. (44) we obtain:

d

ds
A(s, k) = �� ✓ d

ds
ln

✓
C(s, k)

C(0, k)

◆
, (53)

so that, by integrating Eq. (53) with respect to s, we obtain:

A(s, k) = �2�✓

✏2
s(⇣ + ⌫)� 2�✓

✏2
ln

✓
(⇣ + ⌫)

2⇣
e�2⇣ s +

(⇣ � ⌫)

2⇣

◆
. (54)

Substituting formulas (52) and (54) into Eq. (42) we obtain:

M̂(s, k, v) =

e�ı s k

T
µe�

v
2 (a(k)�ı c(k))'(s,k) e�

2�✓ s

✏2
(⌫(k)+⇣(k)) e

� 2�✓

✏2
ln
⇣
1+ (⌫(k)+⇣(k))

2⇣(k) (e�2⇣(k)�1)
⌘

,

s > 0, k 2 Rn, v > 0, (55)

where ' is defined in Eq. (16). Finally, the marginal conditional probability density M

(see Eq. (12)) follows from Eq. (55) inverting the Fourier transform.
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Appendix B: The series expansion in powers of the vol of vol

We assume that the expansion (21) of M in powers of ✏ holds. This implies that the

following expansion in powers of ✏ holds for the Fourier transform of M :

M̂(s, k, v) =
+1X

j=1

✏j M̂
j

(s, k, v), (56)

where

M
j

(s, x, x0, v) =
1

(2⇡)n

Z

Rn

e�ık(x�x

0) M̂
j

(s, k, v)dk . (57)

We derive the first wo terms of the series expansion (57) by computing the Taylor expansion

with base point ✏ = 0 of the exponent of Eq. (55). Using some elementary computations,

we obtain the following expansions as ✏! 0+ (see Eqs. (18), (17)):

⇣(k) =
�

2
+

ı b(k)

2
✏+

✏2

4
(a(k)� ı c(k)) +

✏3

6

✓
�3ı b(k)

2�2

◆
(a(k)� ıc(k)) + o(✏3), ✏! 0+,(58)

⇣(k) + ⌫(k) =
✏2

4�
(a(k)� ı c(k))� ✏3

6

✓
3ı b(k)

2�2

◆
(a(k)� ıc(k)) + o(✏3), ✏! 0+,(59)

⇣(k)� ⌫(k) = �+ ı b(k) ✏+
✏2

4
(a(k)� ı c(k)) +

✏3

6

✓
�3ı b(k)

2�2

◆
(a(k)� ıc(k)) + o(✏3),

✏! 0+, (60)

where o(·) is the Landau symbol. Using Eqs. (58)-(60), we obtain the following formulas:

ln

 
1� (⇣(k) + ⌫(k))(1� e�2s⇣(k))

2⇣(k)

!
= �✏

2

4
(a(k)� ı c(k))

(1� e�� s)

�2
+

✏3

6

✓
3ı b(k)

�2

◆
(a(k)� ıc(k))

✓
1� e�� s

�
� s

2

◆
+ o(✏3), ✏! 0+, (61)

'(s, k) =
1� e�2s⇣(k)

(⇣(k) + ⌫(k))e�2⇣(k) s + (⇣(k)� ⌫(k))
=

1� e�� s

�
+ ✏

ı b(k)

�

✓
s� (1� e�� s)

�

◆
+

✏2

2


(a(k)� ı c(k))

�2

✓
s� 1� e�2� s

2�

◆
+

2b(k)2

�2

✓
s� 1� e�� s

�

◆�
+ o(✏2),

✏! 0+.(62)
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By substituting Eqs. (58), (59), (61) and (62) into Eq. (55), we obtain:

M̂(s, k, v) = e�ı s k

T
µe�

1
2 (a(k)�ı c(k))f1(s,v)e

✏
2 ı b(k)(a(k)�ı c(k))f2(s,v)+o(✏),

s > 0, k 2 Rn, v > 0, ✏! 0+ (63)

where f1 are f2 are the functions given in Eqs. (24)-(25). ¿From Eq. (63), we obtain the

first two terms of the expansion in powers of ✏ of M̂ :

M̂0(s, k, v) = e�ı s k

T
µ e�

1
2 (a(k)�ı c(k))f1(s,v), s > 0, k 2 Rn, v > 0, (64)

M̂1(s, k, v) = e�ı s k

T
µe�

1
2 (a(k)�ı c(k))f1(s,v)

✓
ı b(k)

2�
(a(k)� ı c(k))f2(s, v)

◆
,

s > 0, k 2 Rn, v > 0 . (65)

Now, by computing the inverse Fourier transform of M̂0 and M̂1 we come back to the

variables x, x0. In fact, from the definition of a(k), c(k), k 2 Rn (see Eqs. (13) and (15))

we obtain M̂0 as the Fourier transform of a multidimensional Gaussian function, given by:

M0(s, x, x
0, v) =

e
� 1

2f1(s,v)
(x�x

0+sµ� m̃
2 f1(s,v)�)T��1(x�x

0+sµ� m̃
2 f1(s,v)�)

p
(2⇡)n(f1(s, v))n det�

. (66)

In order to derive an explicit formula for M1 we rewrite Eq. (65) as follows:

M1(s, x, x
0, v) =

f2(s, v)
ı

2�

nX

j=1

�
j

⇢
v,j

Z

Rn

k
j

e�ı k

T (x�x

0+sµ)e�
1
2 (a(k)�ı c(k))f1(s,v) (a(k)� ı c(k)) dk

= �2
f2(s, v)
@

@v

f1(s, v)

ı

2�

@

@v

nX

j=1

�
j

⇢
v,j

Z

Rn

k
j

e�ı k

T (x�x

0+sµ)e�
1
2 (a(k)�ı c(k))f1(s,v)dk

= � f2(s, v)
@

@v

f1(s, v)

1

�

@

@v

nX

j=1

�
j

⇢
v,j

@

@x0
j

Z

Rn

e�ı k

T (x�x

0+sµ)e�
1
2 (a(k)�ı c(k))f1(s,v)dk ,

s > 0, k 2 Rn, v > 0 . (67)

From Eq. (67) we obtain M1:

M1(s, x, x
0, v) = � 1

�

f2(s, v)
@

@v

f1(s, v)

@

@s

nX

j=1

�
j

⇢
v,j

@

@x0
j

M0(s, x, x
0, v)

= � f2(s, v)

� @

@v

f1(s, v)

@

@v

8
<

:
M0(s, x, x0, v)

f1(s, v)

nX

j=1

�
j

⇢
v,j


��1

✓
x� x0 + sµ� m̃

2
f1(s, v)�

◆�

j

9
=

; ,

s > 0, k 2 Rn, v > 0 , (68)

where [·]
j

denotes the j-th component of the vector ·.
Thanks to formulas (66) and (68), we obtain the approximation of the cumulative

distribution function given in (26).
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Appendix C: Explicit formulas for the moments of the yield

variables

Let us deduce the explicit expression for the moments of the variable x
j,t

, j = 1, 2, . . . , n,

(see Eqs. (1), (2)).

M
j,m

(s, x, v) =

Z

Rn

(x0
j

)mM(s, x, x0, v)dx0, (69)

where M is the marginal conditional density in Eq. (11). By using the Fourier transform

of M , Eq. (69) becomes:

M
j,m

(s, x, v) =

Z

Rn

(x0
j

)m
1

(2⇡)n

Z

Rn

e�ık

T (x�x

0)M̂(s, k, v)dk

�
dx0 =

Z

Rn

dx0 (x0
j

� x
j

+ x
j

)m
1

(2⇡)n

Z

Rn

e�ık

T (x�x

0)M̂(s, k, v)dk =

mX

q=0

 
m

q

!
xm�q

j

Z

Rn

M̂(s, k, v)
1

(2⇡)n

Z

Rn

e�ık

T (x�x

0)(x0
j

� x
j

)qdx0
�
dk =

mX

q=0

 
m

q

!
xm�q

j

Z

Rn

M̂(s, k, v) (�ı)q
@q�(k)

@kq
j

dk. (70)

¿From (70), by using some properties of Dirac’s delta function, we obtain:

M
j,m

(s, x, v) =
mX

q=0

 
m

q

!
xm�q

j

ıq
@q

@kq
j

M̂(s, k, v)
��
k=0

=
mX

q=0

 
m

q

!
xm�q

j

ıq L⇤
j,q

(s, v), s > 0, x 2 Rn, v > 0. (71)

where L⇤
0,0(s, v) = M̂(s, 0, v) and L⇤

j,q

(s, v) = @

q

@k

q
j
M(s, k, v)

��
k=0 , j = 1, 2, . . . , n, q =

1, 2, . . ..

We prove that L
j,q

are polynomial functions of v and we give a recursive formula to

compute these functions.

By deriving Eqs. (40)-(41) with respect to k
j

and choosing k = 0, we obtain the functions

L
j,q

, j = 0, 1, . . . , n, q = 1, 2, . . . to be the solution of suitable problems. Specifically,

L⇤
0,0 is solution of the equation:

@L⇤
0,0

@s
= ✏2

v

2

@2L⇤
0,0

@v2
+ �(✓ � v)

@L⇤
0,0

@v
, (72)

with the initial condition:

L⇤
0,0(0, v) = 1 ; (73)
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L⇤
j,1, j = 1, 2, . . . , n, are solutions of the equations:

@L⇤
j,1

@s
= ✏2

v

2

@2L⇤
j,1

@v2
+ �(✓ � v)

@L⇤
j,1

@v
+ ı

⇣
m̃�2

j

v

2
� µ

j

⌘
L⇤
0 � ı v ✏⇢

v,j

�
j

@L⇤
0,0

@v
,

j = 1, 2, . . . , n, (74)

with the initial conditions:

L̂⇤
j,1(0, v) = 0 , j = 1, 2, . . . , n; (75)

L
j,q

, j = 1, 2, . . . , n, q = 2, 3, . . . , are solutions of the equations:

@L⇤
j,q

@s
= ✏2

v

2

@2L⇤
j,q

@v2
+ �(✓ � v)

@L⇤
j,q

@v
� ı ✏ v q �

j

⇢
j,v

@L⇤
j,q�1

@v

+ı q
⇣
m̃�2

j

v

2
� µ

j

⌘
L⇤
j,q�1 � v

q(q � 1)

2
�2
j

L⇤
j,q�2 , j = 1, 2, . . . , n, q = 2, 3, . . . , (76)

with the initial conditions:

L⇤
j,q

(0, v) = 0, j = 1, 2, . . . , n, q = 2, 3, . . . . (77)

It is easy to see that the solution of problem (72)-(73) is given by:

L⇤
0,0(s, v) = 1, (78)

so that, by substituting Eq. (78) into Eqs. (74)-(75), we obtain:

@L⇤
j,1

@s
= ✏2

v

2

@2L⇤
j,1

@v2
+ �(✓ � v)

@L⇤
j,1

@v
+ ı

⇣
m̃�2

j

v

2
� µ

j

⌘
, (79)

with initial condition (75).

We look for the solution of Eq. (79) in the form L⇤
j,1 = f

j,1,0(s)+ vf
j,1,1(s) and we obtain:

d

ds
f
j,1,0 = � ✓ f

j,1,1 � ı µ
j

, (80)

d

ds
f
j,1,1 + � f

j,1,1 =
ı m̃�2

j

2
, (81)

with initial conditions:

f
j,1,l(0) = 0, l = 0, 1. (82)

An easy computation gives:

f
j,1,0(s) =

ı ✓ m̃�2
j

2
(s�  1(s))� ı s µ

j

,

f
j,1,1(s) =

ı ✓ m̃�2
j

2
 1(s) , (83)
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where  1 is the function of time defined by Eq. (97). Using Eq. (83), we obtain:

L⇤
j,1(s, v) =

ım̃

2
�2
j

[✓(s�  1(s)) + v  1(s)]� ı µ
j

s, j = 1, 2, . . . , n. (84)

Similarly, we look for the solution of Eq. (76) in the form:

L⇤
j,q

(s) =
qX

d=0

vdf
j,q,d

(s), j = 1, 2, . . . , n, q = 2, 3, . . . . (85)

In order to satisfy the initial conditions (77) the functions f
j,q,d

must satisfy the following

conditions at s = 0:

f
j,q,d

(0) = 0 . (86)

By substituting Eq. (85) into Eq. (76), we obtain the following problems depending on

the powers of v:

• power d = 0:

d

ds
f
j,q,0 = � ✓ f

j,q,1 � ı µ
j

q f
j,q�1,0 , (87)

• power 1  d  q � 1:

d

ds
f
j,q,d

+ � d f
j,q,d

=
"2

2
d(d+ 1)f

j,q,d+1 + (d+ 1)�✓ f
j,q,d+1 � ıµ

j

q f
j,q�1,d

�ı " q d�
j

⇢
v,j

f
j,q�1,d +

ı

2
m̃�2

j

q f
j,q�1,d�1 �

q(q � 1)

2
�2
j

f
j,q�2,d�1 , (88)

• power d = q

d

ds
f
j,q,q

+ � q f
j,q,q

=
ım̃

2
�2
j

q f
j,q�1,q�1. (89)

Note that Eqs. (87)-(89) can be solved by backward recursion. In fact, we have:

f
j,q,q

(s) =
ım̃

2
�2
j

q e�� s

Z
s

0
e� ⌧ f

j,q�1,q�1(⌧)d⌧ , (90)

f
j,q,d

(s) = e�� s

Z
s

0
e� ⌧

⇢
"2

2
d(d+ 1)f

j,q,d+1(⌧) + (d+ 1)�✓ f
j,q,d+1(⌧)� ıµ

j

q f
j,q�1,d(⌧)+

ı

2
m̃�2

j

q f
j,q�1,d�1(⌧)� ı " q d�

j

⇢
v,j

f
j,q�1,d(⌧)�

q(q � 1)

2
�2
j

f
j,q�2,d�1(⌧)

�
d⌧ , (91)

and

f
j,q,0(s) =

Z
s

0
[�✓ f

j,q,1(⌧)� ı q f
j,q�1,0(⌧)] d⌧ (92)
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The integrals appearing in Eqs. (90), (91) and (92) are elementary integrals that can be

computed explicitly.

In fact, by using formulas (90), (91) and (92), we deduce the first four conditional

moments of the yield/log-yield variable given that x0 = x and v0 = v when m̃ = 0 and

µ
j

= 0, j = 1, 2, . . . , n (i.e. the model used in the numerical experiment in the Eurozone).

For j = 1, 2, . . . , n, they are:

M
j,1(s, x, v) = x

j

, (93)

M
j,2(s, x, v) = x2

j

+ �2
j

f1(s, v), (94)

M
j,3(s, x, v) = x3

j

+ 3x
j

�2
j

f1(s, v) + 3"�3
j

⇢
v,j


1

�
f2(s, v)� s(✓ � v) 1(s)

�
, (95)

M
j,4(s, x, v) = x4

j

+ 6x2
j

�2
j

f1(s, v) + 12x
j

"�3
j

⇢
v,j


1

�
f2(s, v)� s(✓ � v) 1(s)

�
+ L⇤

j,4(s, v),

(96)

where  
m

, m = 1, 2 and L⇤
j,4 are given by:

 
m
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, m = 1, 2 , (97)
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�4
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�2
⇢2
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✓
s� 3 1(s) + 2se�� s +

s2

2
� e�� s

◆
.

(98)

Using formulas (93)-(96) we obtain:

E((x0
j

� x0,j)
2) = �2

j

f1(s, v0), (99)

E((x0
j

� x0,j)
3) = 3" �3

j

⇢
v0,j


1

�
f2(s, v0)� s(✓ � v0) 1(s)

�
, (100)
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E((x0
j
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4) = 6

v20
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�2
(✏2 + 2�✓)( 2(s)� se�� s)
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(101)

When m̃ 6= 0 and µ
j

6= 0, j = 1, 2, . . . , n the first two conditional moments are given by:

M
j,1(s, x, v) = x

j

+ µ
j

s� m̃

2
�2
j

(✓s+ (v � ✓) 1(s)) = x
j

+ µ
j

s� m̃

2
�2
j

f1(s, v), (102)

and

M
j,2(s, x, v) = x2

j

+ 2x
j

(M
j,1(s, x, v)� x

j

)� L⇤
2(s, v) , (103)

where L⇤
j,2(s, v) = f

j,2,2(s)v2 + f
j,2,1(s)v + f

j,2,0(s) where f
j,2,m, m = 0, 1, 2 are given by:

f
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4
�4
j
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2 , (104)
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�2 1(s) + s(1 + e�� s)
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s2�
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◆

+
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2
�4
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�
(�2 1(s) + s(1 + e�� s)). (106)

Formulas (102) and (103) allow us to get elementary expressions for variance.
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