
 

Using machine learning for financial 
fraud detection in the accounts of 
companies investigated for money 
laundering 

José A. Álvarez-Jareño 
Elena Badal-Valero 
José Manuel Pavía 

2017 / 07 



 
 
 
 
 
 
 
 
 
 
        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
	
	

Using machine learning for financial fraud detection in the  
accounts of companies investigated for money laundering  

 

2017 / 07 
 

Abstract 

Benford’s Law is a well-known system use in accountancy for the analysis and 
detection of anomalies relating to money laundering and fraud. On that basis, and 
using real data from transactions undertaken by more than 600 companies from a 
particular sector, behavioral patterns can be analyzed using the latest machine 
learning procedures. The dataset is clearly unbalanced, for this reason we will 
apply cost matrix and SMOTE to different detecting patters methodologies: 
logistic regression, decision trees, neural networks and random forests. 
The objective of the cost matrix and SMOTE is to improve the forecasting 
capabilities of the models to easily identify those companies committing some 
kind of fraud. The results obtained show that the SMOTE algorithm gets better 
true positive results, outperforming the cost matrix implementation. However, the 
general accuracy of the model is very similar, so the amount of a false positive 
result will increase with SMOTE methodology. 
The aim is to detect the largest number of fraudulent companies, reducing, as far 
as possible, the number of false positives on companies operating correctly. The 
results obtained are quite revealing: Random forest gets better results with 
SMOTE transformation. It obtains 96.15% of true negative results and 94,98% of 
true positive results. Without any doubt, the listing ability of this methodology is 
very high. 
This study has been developed from the investigation of a real Spanish money 
laundering case in which this expert team have been collaborating. This study is 
the first step to use machine learning to detect financial crime in Spanish judicial 
process cases.  
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Abstract 
 
Benford’s Law is a well-known system use in accountancy for the analysis and detection of 
anomalies relating to money laundering and fraud. On that basis, and using real data from 
transactions undertaken by more than 600 companies from a particular sector, behavioral 
patterns can be analyzed using the latest machine learning procedures. The dataset is 
clearly unbalanced, for this reason we will apply cost matrix and SMOTE to different 
detecting patters methodologies: logistic regression, decision trees, neural networks and 
random forests.  
The objective of the cost matrix and SMOTE is to improve the forecasting capabilities of the 
models to easily identify those companies committing some kind of fraud. The results 
obtained show that the SMOTE algorithm gets better true positive results, outperforming the 
cost matrix implementation. However, the general accuracy of the model is very similar, so 
the amount of a false positive result will increase with SMOTE methodology.  
The aim is to detect the largest number of fraudulent companies, reducing, as far as 
possible, the number of false positives on companies operating correctly. The results 
obtained are quite revealing: Random forest gets better results with SMOTE transformation. 
It obtains 96.15% of true negative results and 94,98% of true positive results. Without any 
doubt, the listing ability of this methodology is very high. 
This study has been developed from the investigation of a real Spanish money laundering 
case in which this expert team have been collaborating. This study is the first step to use 
machine learning to detect financial crime in Spanish judicial process cases. 
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1. INTRODUCTION 

 

Everyday, TV news displays economic crimes: tax evasion, money laundering, corruption, 

misappropriation of public funds, etc. All of them are known as White Collar crimes. In this 

kind of crimes, intelligence is more important than physical strength, and the tools used to 

detect and stop them are more sophisticated than what’s usually used for other crimes. In 

1972, American economist Hal Varian suggested to used Benford’s law as a diagnostic tool 

in projective model results, especially to predict irregularities that require deeper inspections. 

Noncompliance to Benford’s law is just an evidence that shows that values could have been 

manipulated, not a crime in itself. Benford’s law is not a Universal Law as Newton's law of 

universal gravitation and there are several instances when data doesn’t comply with it. 

Despite of this, in the economic world Benford’s law is present in many datasets and its 

abscence would be an evidence of irregularities in the accounting or transaction of certain 

companies. Benford’s law can be a clue to discover an economic crime. If the data is 

manipulated, something can be hidden after this manoeuvre and it would be useful to 

investigate the reason of this behaviour. 

In this study, we use Benford’s law as a detection tool for anomalies in books and 

accounting records of companies investigated for financial crimes, applying four different 

models of pattern recognition (logistic regression, neural network, decision trees and random 

forests). In accordance with previous data provided by the police, these four models are 

used to classify the commercial activity made by the company, to obtain its suppliers and 

whoever was part of the financial engineering needed to perform the crime. 

The follow study has been developed from the investigation of a real Spanish money 

laundering case in which this expert team have been collaborating. As far as we know, this 

study is the first step to use machine learning to detect financial crime in a Spanish judicial 

process case. 

Thanks to the use of the methodology shown in this study, we were able to identify those 

companies showing a larger probability of completing fraudulent operations,  focusing this 

way the limited police investigation resources to these companies. 

The rest of the article is organized as follows: Section 2 reviews the use of Benford’s law in 

the literature. Section 3 describes the methodology: (Benford’s law, the tests used, the 

machine learning procedures employed and some issues about data balancing). All the data 

and transformations made will be explained in Section 4. Section 5 shows the results 

reached after applying the four abovementiones procedures using three different 

approaches. Sections 6  concludes. 

 



 3 

2. LITERATURE REVIEW 

 

The Benford´s Law has been applied to different fields of knowledge. In mathematics, Luque 

and Lacasa (2009) have revealed a statistical behaviour in the sequence of prime numbers 

and the Riemann Zeta Function. In computer engineering, Torres et al. (2007) have verified 

the fact that the size of the files stored in a personal computer follow the Law of Benford, and 

also that a better knowledge a priori on the data stored in a computer can facilitate the calcu-

lation and improve its speed; developing a more effective data storage as a tool for detecting 

viruses or errors. The law has been also employed in the study of the length of the rivers, 

Rauch et al. (2011), or employed in the detection of scientific fraud (Diekmann, 2007).  

Specifically in economical field, Professor Mark Nigrini (1992), of the Cox School of 

Business, stated that it could be used to detect fraud in income tax returns and other 

accounting documents. A current development in the field of accounting has revealed the 

application of Benford's Law to detect fraud in the "manufacture" of data in financial 

documents. 

Moreover, Quick and Wolz (2003) worked on data for the incomes and balances of several 

German companies for the years 1994-1998. Their results reveal that the first and second 

digit in most cases (both in a year by year analysis and in the whole period analysis) 

conforms the Benford's Law. 

On the other hand, Günnel and Tödter (2009) suggest that controls for data manipulation 

should focus on the first digit. They consider that Benford's Law is a simple, objective and 

effective way to detect anomalies in large samples requiring a more detailed inspection tool. 

However, Ramos (2006) states that the best part of the analysis is the first three digits in 

which an electrocardiogram is actually obtained from the file and you can see in detail what 

happens at each point and what the possible fraud operations are. 

In a more recent study, Alali and Romero (2013), which analyzed the financial information of 

more than ten years of accounting data from different companies, concluded that there is a 

significant error in the adjustment of the Benford´s Law on the current assets. That is, in 

capital goods, properties, accounts receivable, ..., which means that during the studied 

period there was an overestimation of the assets. 

As evidenced, the use of Benford's Law in the field of accounting is large and thus has 

demonstrated its ability to detect anomalies in accounting data. 

According to this premise this study proposes different measures of adjustment of the 

sample to the Benford´s Law, this measures are the indicators for the detection of patterns 

that conceal fraudulent operations, so this study is able to direct the police authorities 

towards companies that have greater fraudulent probability. 
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3. METHODOLOGY 

 

3.1. Benford’s Law 

Empirically, Benford (1938) found that many data sets and mathematical sequences do not 

have a uniform distribution of the first digit, as one might expect, and yet it has a biased 

probability function as follows: 

 

f x1( ) = Pr X = d1( ) = log10 1+ 1d1
⎛
⎝⎜

⎞
⎠⎟

d1 = 1,2,…,9  

the distribution function, 

 
F x1( ) = Pr X ≤ d1( ) = log10 1+ d1( ) d1 = 1,2,…,9  

Starting from the first digit distribution, we can derive the second digit distribution, as follows: 

 

f x2( ) = Pr X = d2( ) = log10 1+
1

10 ⋅ k + d2

⎛
⎝⎜

⎞
⎠⎟k=1

9

∑ d2 = 0,1,2,…,9  

The most important properties of Benford's Law are both invariance in scale and invariance 

on the basis. If digits of X were randomly distributed, we would expect a uniform for the first 

digit value d1 = 1, 2 distribution, ..., 9. However, a number of variables show a different 

distribution for the first digit and according with the demonstrations of Pinkham (1961) and 

Hill (1995) would comply with the two indicated properties: 

• Invariance in scale. It has been empirically observed that when making changes in 

scale in those variables that conform to the logarithmic law the new transformed 

variable also fit well to this law. If the units of measurement are changed Benford's 

Law is still fulfilled, that is, it does not depend on the measurement system. In 

economic terms, the currency in which the variable object of study is measured is 

independent for the obtained results. 

• Invariance on base. The logarithmic law is independent of the logarithmic base that is 

used, and is equally valid on base 10, on binary basis, or on any other basis. Hill 

(1995) showed that the logarithmic distribution is the only continuous distribution that 

is invariant on base and that invariance in scale implies invariance on base, but not 

vice versa. 
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Table 1: Digits Probabilities. 

Value 1º Digit 2º Digit 3º Digit 4º Digit 
0 -- 11.9679% 10.1784% 10.0176% 
1 30.1030% 11.3890% 10.1376% 10.0137% 
2 17.6091% 10.8821% 10.0972% 10.0098% 
3 12.4939% 10.4330% 10.0573% 10.0059% 
4 9.6910% 10.0308% 10.0178% 10.0019% 
5 7.9181% 9.6677% 9.9788% 9.9980% 
6 6.6947% 9.3375% 9.9401% 9.9941% 
7 5.7992% 9.0352% 9.9019% 9.9902% 
8 5.1153% 8.7570% 9.8641% 9.9863% 
9 4.5757% 8.4997% 9.8267% 9.9824% 

Total 100.00% 100.00% 100.00% 100.00% 
Source: Own elaboration. 

 

Benford's Law is more robust than you can imagine. Not all numerical series follow a Benford 

distribution, however, if several distributions are selected randomly, and the samples taken 

from each of these distributions are random, then the frequency of the digits of the combined 

data set will converge to Benford´s Law Distribution. Figure 1 shows the cumulative 

distribution functions for the first, second, third and fourth digits. 

 
Figure 1. Distribution function for first, second, third and fourth digit.

 
Source: Own elaboration. 

 
As the occupied position is advanced, the probability tends to be uniform, and the probability 

of finding each of the different digits is 10%. Figure 1 shows that the representation of the 

distribution function converges to a uniform distribution for the 10 digits. 
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3.2. Test of hypothesis 

The aim of this paper is to determine the fit of the sample under analysis1 to Benford´s Law, 

in order to analyze patterns that could hide fraud operations. 

Starting from the Chi-square test, an empirical test will be performed based on the simulation 

from which the adjustment measures of each company will be obtained.  

Cho and Gaines (2007) and Giles (2007) state that the chi-square test is too rigid to evaluate 

goodness-of-fit, since the proportions of Benford’s law do not represent a true distribution but 

their expected values in the limit. They propose using statistical or other methodologies that 

are less sensitive to sample size than Chi-square test. 

The Kolgomorov-Smirnov and Kuiper tests have the same problem as the Chi-square tests, 

when they are applied to large databases, so we propose the next Z statistic to measure the 

adjustment of the first and second digits of each company. 

The Z statistic is used to measure the conformity of a set of data to the Benford´s Law, the 

formula is as follows: 

  

Zi =
noi − nTi −

1
2N

⎛
⎝⎜

⎞
⎠⎟

nTi(1− nTi )
N

 

Where: 

oin : Value observed in the sample. 

Tin : Expected Value derived from Benford's Law 

the term (1 / 2N) is a continuity correction term, it is only used when it is less than the first 

numerator term. 

With the statistic Z we evaluate the proportion of the digits separately by determining which 

digits differ from the Benford distribution. This implies that for the first digit there are nine 

comparisons, and one can´t take the significance level of 5% to compare the p-values. The 

process of reducing the level of significance is based on Bonferroni's inequality (Hogg et al. 

(2005)). Each p-value is compared with α/9 = 0,05/9 = 0,0056; obtaining an approximate 

probability of rejection of 0.05. If P(IZI > 2.77) = 0,0056 any Z statistic greater than 2,77 

absolute value implies the rejection of the null hypothesis. 

As happens with the chi-square tests and other p-values based tests, the Z test,  rejects the 

null hypothesis when we analyze the adjustment to the law of the whole set, this is due to 

the large amount of data analyzed (285,774 commercial operations of 643 supplier 

                                                
1 The total amount of commercial operations between the suppliers and the core Company. 
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companies), so we propose an empirical test based on the simulation that is not sensitive to 

the sample size, the OverBenford Test. 

The OverBenford Test is based on the generation of 100 Benford´s distribution simulations 

of the same size as each of the companies, and then to perform a Chi-square contrast of 

each one, an alternative measure is obtained for each company that it is not so influenced 

by sample size. 

The proposed contrast is as follows: 

  
T =

(noi − nTi )
2

nTi
i=1

m∑  

Where: 

oin  : It is the value observed in the sample. 

Tin  : It is the synthetic value generated from a Benford´s distribution with the same size as 

the simple. 

 

3.3. Machine Learning Methodology 

This work uses the Benford´s Law as the basis for classifying businesses: as legal or 

fraudulent. In a first step the values corresponding to the statistical OverBenford and Zi are 

calculated. These p-values will serve to determine the behaviour of each company in their 

daily operations, so they are used to perform the classification. If the number of operations is 

high, the use of the various digits can be observed, as well as if these companies follow the 

expected values and in what proportion. As indicated at the outset, a particular behaviour 

against the Benford´s Law may be an indicator of illegal operations, but it can´t be a crime 

himself or an evidence against a company. 

The variables used to make the different classifications will be the p-values indicated, the 

frequency of operations and the dependent variable which has been generated by an expert, 

based on the knowledge of the operations carried out between the different companies. 

The machine learning methodologies used are: 

• Logistic regression. 

• Neural network. 

• Decision tree. 

• Random forest. 

The following part summarizes the different methodologies and their justification. 
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3.3.1. Logistic Regression 

Logistic regression models are widely used to know the relationship between qualitative 

variable, dichotomous dependent variable (binary or binomial logistic regression) and one or 

more independent explanatory variables, or covariates, which can be qualitative or 

quantitative. Being the exponential type the initial equation, although it´s logarithmic 

transformation (logit) allows its use as a linear function.  

Because the characteristics of the logistic regression models, two types of analysis can be 

performed: 

• Quantify the importance of the relationship between each of the covariates and 

the dependent variable. 

• Classify individuals within the two categories of the dependent variable, 

depending on the probability of belonging to one of them. 

The second type of analysis is the one of interest for the study to be carried out here. 

Logistic regression is a widely used statistical tool to estimate an individual probability, as 

Salas (1996) used to determine the demand for university studies in Spain. 

However, when the number of covariates is relatively high or when covariates have a high 

correlation the estimated parameters may be unstable. For this reason, we select the 

variables that will be used in the training of the model. 

 

3.3.2. Neural Networks 

The human brain inspires neural networks, and they try to reproduce the essential aspects of 

a real neuron. Neural networks (NN) are a set of simpler elements that are interconnected in 

form hierarchical and interacting like neural systems. 

To be able to use them as represent systems of greater complexity NN can have feedback. 

A differential feature is that they can learn from experience through the generalization of 

cases. 

Artificial neural networks constitute a technique of mass processing of information that 

emulates the essential characteristics of the neuronal structure in the biological brain. 

As Sosa Sierra (2011) states, "a neural network is characterized by four basic elements: its 

topology, the learning mechanism, the type of association between input and output 

information and how this information is represented." 

The neurons are distributed in the network forming layers of a certain number of basic 

elements. That is, there is an input layer that directly receives information from the external 

sources of the network, hidden layers that are internal to the network and do not have direct 

contact with the outside (from zero levels to a high number), being able to be interconnected 

in different ways, which determines the different topologies and an output layer that transfers 
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information from the network to the outside. 

Therefore, the fundamental parameters of the network will be: the number of layers, the 

number of neurons per layer, the degree of connectivity and the type of connections 

between neurons. 

There are essentially two types of networks based on the learning paradigm: supervised and 

unsupervised. In supervised learning, the network is given the correct answer for each of the 

training instances, this type will be the one used in this work. 

In this way the weights can be adjusted in order to approximate the response of the network 

to the response provided by the sample data. 

In non-supervised learning, patterns and correlations are explored in the input data of the 

network, to be able to classify them. 

 

3.3.3. Decision Tree 

Decision Trees is another classic technique that is widely used in machine learning. Decision 

tree classifies the instances according to an objective based on the available variables, 

which can be qualitative or quantitative, and can be interpreted as a series of consecutive 

conditions. 

Decision Tree algorithms split the data recursively until some condition is met, such as 

minimization of entropy or classification of all instances. Due to this procedure, the tendency 

is to generate trees with many nodes and nodes with many leaves, which is an over-

adjustment or over-training. The tree will have a high accuracy in the classification of the 

training data, but very little precision to classify instances of the test data. 

This problem must be solved with a posteriori pruning procedure of the tree construction. 

The idea is to measure the estimated error of each node, if the estimated error for a node is 

less than the estimated error for its sub-nodes then the sub-nodes are removed. The 

algorithm used is the C4.5, developed by Quinlam (1993), which allows pruning. 

 

3.3.4. Random Forests 

The Random Forest methodology, developed by Breiman (2001), is a variant of the bagging 

methodology that uses decision trees as classifiers. A random forest is a classifier consisting 

of a collection of tree classifiers that are generated by a randomly distributed vector 

identically and independently, and where each tree casts a vote for the most popular input 

class. 

Each tree is constructed using a different bootstrap sample (random sampling with 

replacement) from the original training data set. To classify a new object, it is given the 

vector that describes it to each tree, which make its classification independent. The trees are 
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built without any pruning, letting it reach the highest possible height. 

Instances are sorted with the class that gets the highest number of votes from the assembly 

trees. The results of random forests are difficult to interpret since they are the result of the 

aggregation of many decision trees. 

Breiman (2001) states that the error of random forests depends on two fundamental factors: 

the correlation between the trees of the ensemble and the effectiveness of each individual 

tree.  

Bagging method increases the stability of the decision tree that increases the robustness of 

the presence of redundant variables, making it very suitable in data sets with many 

variables. 

 

3.4. Unbalanced Data 

Unbalanced data sets are quite common in the scientific literature, and data sets with a low 

percentage of positive instances are the most relevant. Kotsiantis et al. (2006) indicate that 

these data sets are quite common in different fields. The methods used for the treatment of 

unbalanced data are: 

• Balance the training set by: 

o Sub-sampling of the majority class. 

o Over-sampling of the minority class. 

o Generation of synthetic data in the minority class. 

• Modify the algorithm by: 

o Adjusting class weight (Cost-Sensitive Learning). 

o Precision threshold adjustment. 

o Modify it to make it more sensitive to the minority class. 

Subsampling can be used with large data sets and applied to the majority class by reducing 

the number of instances of this class. Since this method discards most of the instances of 

the majority class, information that could be relevant in the training set is lost. 

Over-sampling, as opposed to sub-sampling, works with the minority class, which increases 

to balance it with the majority class. In this case, no information is lost, but the training set is 

increased by copying and pasting minority class observations, which could lead to other 

problems. 

These two techniques are easy to apply but as indicated both have their own problems, so 

you have to use a more sophisticated approach, using any of the following methodologies. 
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3.4.1. Cost Sensitive Learning 

This technique does not create balanced data distributions, but rather seeks to balance 

learning by applying a cost matrix describing the cost of misclassification versus the correct 

one. 

This technique uses the cost associated with misclassification of observations by applying 

specific class weights as a function of loss (smaller weights for instances of the majority 

class and larger weights for those of the minority class). The weights can be set to be 

inversely proportional to the fraction of corresponding class instances. 

In financial fraud example, there will be no cost associated with identifying a person who has 

committed fraud as positive and who has not made fraud as negative. However, the cost 

associated with identifying a person who has committed fraud as negative (false negative) is 

much more dangerous than identifying a person who did not cause fraud as positive (false 

positives). 

The cost matrix is similar to the confusion matrix. The objective is to penalize the errors 

(false positives and false negatives) against the correct ones (real negatives and true 

positives). 

 

3.4.2. Synthetic Minority Oversampling Technique (SMOTE) 

SMOTE is a technique that provides new information regarding the minority class as well as 

underrepresentation of the majority class (Chawla et al., 2002). 

With this technique it is possible to balance the data set generating artificial data, so it would 

be a form of oversampling but with better conditions. This technique generates a random set 

of minority class observations to change the learning bias of the classifier towards the 

minority class. 

This work uses bootstrapping and KNN (algorithm of the nearest K-neighbours) to generate 

the random set. Basically it takes the difference between the function in question and its 

nearest neighbour, then this difference is multiplied by a random number between 0 and 1, 

and adds it to the feature that helps in the selection. 

 

4. Sample Description 

 

The quality of the data will be the basis for a correct analysis and subsequent classification, 

so the majority part of the work has been devoted to cleaning and data transformation. 
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4.1. Sample and values generation 

Given that the case analyzed is one of the most voluminous money-laundering cases in 

Spanish history, there is a large database containing 285,774 commercial transactions 

carried out by 643 suppliers with the company investigated. This study is based on the 

analysis of the amounts of each commercial operations. 

It is only certain that 26 of the total number of companies are been identified previously as 

fraudulent, that is, the operations they carry out do not conform to legality. Therefore, we 

only have information a priori that 4% of companies are fraudulent, but it is unknown if the 

rest companies are or are not. The a priori information is provided by the police authorities 

based on a judicial process investigation. 

If we compare the whole sample distribution with Benford's Law we can visually verify how 

perfect it fits. 

 
Figure 2: 1º and 2º digits Benford´s Law Overall analysis. 

  
Source: Own elaboration. 

 

However, when the different tests are performed it is observed that the null hypothesis is 

rejected. The p-values obtained from the traditional tests would not serve as a measure for 

quantifying the fit in very large samples. 

 

Table 2: Global Analysis of Benford’s Adjustment to the First Digit. 
Mean Var Ex.Kurtosis Skewness 

0.496 0.085 -1.224 0.026 

Source: Own elaboration. 
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Table 3: First Digit Benford’s Law Tests. 
 X-Squared Test Z-Test OverBenford Test 

P-Value 2.2e-16 2.3e-16 0.2303 

Source: Own elaboration. 
 

The OverBenford Test, which is the proposed test in this study, has the capacity to measure 

the adjustment to the Benford Law avoiding the sensitivity to sample size, a problem that the 

other tests analyzed have. 

Finally we decide to include only 335 companies to carry out the analysis (just those with a 

minimum of operations), of which the experts have identified as fraudulent 23 of them, so 

only 6.87% of the instances belong to the minority class. Having clearly an unbalanced data 

set. It is opportune to apply balancing strategies to the sample. 

The minimum number of operations of each company (variable "frequency") for a company 

to be incorporated in the analysis is 195, which makes available 245,227 operations of 335 

companies. The average number of operations of a fraudulent company is 2,042 operations, 

while the mean of the rest companies is 635.45 operations. 

Given the predisposition of fraud companies (companies that commit financial fraud and 

money laundering) to generate the maximum number of possible operations with the aim of 

hiding the fraud strategy among them, this work decided to include frequency variable in the 

analysis, this is one of the most correlated with the variable fraud. 

Therefore, we have for each of the companies: the measure of empirical test, OverBenford 

Test, the "frequency" or number of operations recorded and the Z-statistic p-values results of 

the first and second digits. 

Thus, the objective is to analyze whether there is any pattern of behavior that differentiates 

companies that commit fraud which do not. 
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Figure 3: Variables´s Distribution. 

 
Source: Own elaboration. 

 
We have 21 independent variables: the OverBenford Test measure, 9 (P1 to P9) plus 10 (S0 

to S9) Z statistic p-values of each first digit and the company’s operations frequency. 

 

4.2. Selection of Variables 
Although the machine learning procedures considered are designed to avoid the dangers of a high 

number of predictors in terms of multicollinearity and overparameterization, it is sometimes better to 

make a previous selection of predictors (Seo and Choi, 2016). This is the case in this study, where we 

found that the models showed a lower predictive capacity without a previous selection of features. 

Hence, we have made a previous selection among the set of potential predictors using the Weka 

Ranker Search Method algorithm; which is based on correlations between predictors and response 

variable. Table 2 gives the predictors ordered by degree of relation to the response variable. From the 

total of predictors initially considered, we have included in the models those that exceeded the value 

0.05. In total, there are 11 predictors. 

5. Table 2. Correlation ranking of the predictors. Output of Weka. 
Frequency F7 S4 S9 S8 OverBenford S3 F3 F9 S2 F5 

0.3157 0.1392 0.1348 0.1281 0.1060 0.1011 0.0911 0.0713 0.0678 0.0658 0.0573 

S0 F2 F8 F6 S7 S5 S6 F1 F4 S1  

0.0424 0.0389 0.0360 0.0308 0.0274 0.0226 0.0198 0.0189 0.0166 0.0137  
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6. Analysis of Results 

For the evaluation of the models, three options have been proposed: 

• Modelling data without applying any type of transformation. 

• Use cost-sensitive learning (cost matrix). 

• Apply SMOTE algorithm transformation to balance the dependent variable. 

The results are in the following parts. 

 

6.1. Data without Transformation 

We perform the classification without any transformation performing on the data, and the 

following results are obtained through cross-validation: 

 

Table 5: Non-Data Transformation´s Results. 

	
LG	 DT	 NN	 RF	

	
NO	 YES	 NO	 YES	 NO	 YES	 NO	 YES	

NO	 311	 1	 302	 10	 301	 11	 312	 0	
YES	 20	 3	 17	 6	 15	 8	 19	 4	

Correctly	Classified	 93.73%	 91.94%	 92.24%	 94.33%	
Incorrectly	Classified	 6.27%	 8.06%	 7.76%	 5.67%	

TN	Rate	(No)	 99.68%	 96.79%	 96.47%	 100.00%	
TP	Rate	(Yes)	 13.04%	 26.09%	 34.78%	 17.39%	
FN	Rate	(Yes)	 86.96%	 73.91%	 65.22%	 82.61%	
FP	Rate	(No)	 0.32%	 3.21%	 3.53%	 0.00%	

Note: LG: Logistic Regression, DT: Decision Tree, NN: Neural Network, RF: Random Forest. Source: Own elaboration. 

 
The predictive capacity of the models is very high, but they present very low positive real 

rates, between 13.04% of the logistic regression and 34.78% of the neural network. By 

having such unbalanced data, the algorithms tend to favour classification in the dominant 

category, identifying very few fraudulent companies. 

 

6.2. Cost Matrix Application 

It is assumed that the costs of incorrect classification are different. False positives would 

only have the cost of carrying out the corresponding investigation until determining their 

misclassification, however, false negatives would entail a much higher cost (taxes 

defrauded, etc.). The cost matrix will allow the target variable to be balanced without data 

transformation. 

The results obtained are as follows: 
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Table 6: Cost Matrix Application´s Results. 

	
LG	 DT	 NN	 RF	

	
NO	 YES	 NO	 YES	 NO	 YES	 NO	 YES	

NO	 234	 78	 290	 22	 285	 27	 309	 3	
YES	 10	 13	 16	 7	 15	 8	 17	 6	

Correctly	Classified	 		 73.73%	
	

88.66%	
	

87.46%	
	

94.03%	
Incorrectly	Classified	 		 26.27%	

	
11.34%	

	
12.54%	

	
5.97%	

TN	Rate	(No)	 		 75.00%	
	

92.95%	
	

91.35%	
	

99.04%	
TP	Rate	(Yes)	 		 56.52%	

	
30.43%	

	
34.78%	

	
26.09%	

FN	Rate	(Yes)	 		 43.48%	
	

69.57%	
	

65.22%	
	

73.91%	
FP	Rate	(No)	 		 25.00%	

	
7.05%	

	
8.65%	

	
0.96%	

Note: LG: Logistic Regression, DT: Decision Tree, NN: Neural Network, RF: Random Forest. Source: Own elaboration. 

 
Comparing the results with those of the previous section, we detect an important precision 

model decreasing. The random forest is the only one that maintains 94% correctly classified 

instances, reducing in the rest cases to 73.73%. However, the true positive rate has been 

substantially improved. This improvement has been due to the fact that the algorithm 

identifies more companies as possible defrauders by the inclusion of the cost matrix. 

This methodology has increased the detection of true positives in exchange for raising 

considerably the false positives. In the only case this does not happen is in the random 

forest, random forest is which identifies less true positives and less positives. 

 

6.3. Application of SMOTE  

Based on the above data, we had 312 legal companies and 23 non-legal companies, once 

applying SMOTE the new data set has up to 51.06% "no-fraudulent companies" and a 

49.94% "rest companies". On this new training set it is created the new models with the 

techniques already exposed. The results obtained are shown below. 

 

 
Table 7: Application of SMOTE Results 

	
LG	 DT	 NN	 RF	

	
NO	 YES	 NO	 YES	 NO	 YES	 NO	 YES	

NO	 239	 73	 269	 43	 252	 60	 300	 12	
YES	 53	 246	 31	 268	 38	 261	 15	 284	

Correctly	Classified	 		 79.38%			 87.89%			 83.96%			 95.58%	
Incorrectly	Classified	 		 20.62%			 12.11%			 16.04%			 4.42%	

TN	Rate	(No)	 		 76.60%			 86.22%			 80.77%			 96.15%	
TP	Rate	(Yes)	 		 82.27%			 89.63%			 87.29%			 94.98%	
FN	Rate	(Yes)	 		 17.73%			 10.37%			 12.71%			 5.02%	
FP	Rate	(No)	 		 23.40%			 13.78%			 19.23%			 3.85%	

Note: LG: Logistic Regression, DT: Decision Tree, NN: Neural Network, RF: Random Forest. Source: Own elaboration. 
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This method does not substantially improve the predictive capacity compared to the use of 

the cost matrix. However, the true positive rate has improved in all cases. With the original 

data, real positive rates were between 13.04% of the logistic regression and 34.78% of the 

neural network. The cost matrix was improved to 26.09% of the random forest and 56.52% 

of the logistic regression (the one that improved the most). And finally, with the 

transformation of the data (SMOTE), true positive rates range from 82.27% of the logistic 

regression to 94.98% of the random forest. 

Applying SMOTE, the capacity to identify illegal companies is much superior to the two 

previous ones, obtaining in the case of the random forest a very satisfactory result. Of out 

611 instances, it only incorrectly classified 27 (4.42%), which 15 are false negatives and 12 

false positives. 

Finally, for the evaluation of the models we have taken the measurements of the ROC Area, 

the Kappa Statistic and RMSE (Root Mean Squared Error). 

 

Table 8: Results Comparison 

	
No-Transformation	 Cost-Matrix	 SMOTE	

	
ROC	 Kappa	 RMSE	 ROC	 Kappa	 RMSE	 ROC	 Kappa	 RMSE	

LG	 0.747	 0.2061	 0.236	 0.711	 0.3243	 0.4227	 0.844	 0.5675	 0.4012	
DT	 0.635	 0.2664	 0.2702	 0.615	 0.2086	 0.332	 0.894	 0.7348	 0.3499	
NN	 0.765	 0.34	 0.2578	 0.63	 0.2104	 0.3306	 0.926	 0.7252	 0.3392	
RF	 0.74	 0.2817	 0.2268	 0.773	 0.3499	 0.2415	 0.989	 0.9116	 0.2088	
Note: LG: Logistic Regression, DT: Decision Tree, NN: Neural Network, RF: Random Forest. Source: Own elaboration. 

 
From Table 8, it is deduced that the best results are obtained with the SMOTE algorithm 

against the untransformed data and the application of the cost matrix. As for the 

classification technique, the best is the random forest with an ROC area of 0.989 and a 

Kappa statistic of 0.9116, in both cases very close to 1. 

 

7. CONCLUSIONS 

 

In this kind of issues that depend on an expert judgement to determinate target variable 

label, it’s not possible to be sure about the algorithm classification. Investigated companies 

would have been sorted as legal or illegal, but there are a significant number of un-

investigated companies included inside the legal companies group. It is certain that 

fraudulent companies are fraudulent; however not all legal companies are legal. This is one 

of the principal purposes of this study: to be able to detect fraudulent companies based on 

similarities with other companies already investigated. 

The obtained results show that the SMOTE algorithm gets better true positive results over 
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the cost matrix implementation. However, the general accuracy of the model is very similar, 

so the amount of a false positive result will increase with SMOTE methodology. Cost matrix 

identifies fewer positives and, as a result, there would be less number of investigated 

companies. 

Selecting a high number of investigated companies would have two negative points. First 

one is the increase of investigation costs. More investigated companies means more time, 

more staff and more resources. The second one is about annoyances caused to legal 

companies, because of the investigation process itselt and its consequences. 

Random forest gets better results with SMOTE transformation. It obtains 96.15% of true 

negative results and 94,98% of true positive results. Without any doubt, the listing ability of 

this methodology is very high. 

The best solution would be to use different methods and algorithms to evaluate different 

approaches. Data without transformation sorts true negatives very well and this could be 

used if we apply methods of assembling models for the final classification. 
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